
Georgia Southern University Georgia Southern University 

Georgia Southern Commons Georgia Southern Commons 

Environmental Health Sciences Faculty 
Publications Environmental Health Sciences, Department of 

2011 

Anaplasmataceae as Human Pathogens : Biology, Ecology and Anaplasmataceae as Human Pathogens : Biology, Ecology and 

Epidemiology Epidemiology 

Marina E. Eremeeva 
Georgia Southern University, meremeeva@georgiasouthern.edu 

Gregory A. Dasch 
Centers for Disease Control and Prevention, gdasch@cdc.gov 

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/environ-health-facpubs 

 Part of the Environmental Health Commons, Environmental Health and Protection Commons, and the 

Environmental Public Health Commons 

Recommended Citation Recommended Citation 
Eremeeva, Marina E., Gregory A. Dasch. 2011. "Anaplasmataceae as Human Pathogens : Biology, Ecology 
and Epidemiology." Revue Tunisienne d'Infectiologie, Intracellular Bacteria: From Biology to Clinic, 5 (S1): 
S7-S14: Revue Tunisienne d'Infectiologie. source: http://www.rev-tun-infectiologie.org/
detail_art.php?id_det=32 
https://digitalcommons.georgiasouthern.edu/environ-health-facpubs/57 

This conference proceeding is brought to you for free and open access by the Environmental Health Sciences, 
Department of at Georgia Southern Commons. It has been accepted for inclusion in Environmental Health Sciences 
Faculty Publications by an authorized administrator of Georgia Southern Commons. For more information, please 
contact digitalcommons@georgiasouthern.edu. 

https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/environ-health-facpubs
https://digitalcommons.georgiasouthern.edu/environ-health-facpubs
https://digitalcommons.georgiasouthern.edu/environ-health
https://digitalcommons.georgiasouthern.edu/environ-health-facpubs?utm_source=digitalcommons.georgiasouthern.edu%2Fenviron-health-facpubs%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/64?utm_source=digitalcommons.georgiasouthern.edu%2Fenviron-health-facpubs%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/172?utm_source=digitalcommons.georgiasouthern.edu%2Fenviron-health-facpubs%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/739?utm_source=digitalcommons.georgiasouthern.edu%2Fenviron-health-facpubs%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/environ-health-facpubs/57?utm_source=digitalcommons.georgiasouthern.edu%2Fenviron-health-facpubs%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


Revue Tunisienne d’Infectiologie April 2011, Vol.5, Supplement 1 : S30 - S3930

G E N E R A L R E V I E W

Key words : Anaplasma phacocytophilum, Ehrlichia chaffeensis, anaplasmosis,
ehrlichiosis, tick-borne diseases.

Abstract:
This review describes the biology, ecology, and epidemiology of known human pathogens
in the family Anaplasmataceae that are transmitted by ticks and belong to the genus
Anaplasma and genus Ehrlichia. We discuss the current status of diagnosis and
surveillance of the diseases they cause, and address the challenges and new perspectives
raised due to continuous recognition of new emerging human pathogens in the family
Anaplasmataceae.
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INTRODUCTION

The family Anaplasmataceae is comprised of increasingly
numerous genera of obligate intracellular Gram negative
alphaproteobacteria. The current description of the family was
formally proposed in 2001 based on their nucleotide sequence
similarity, phenotypic and eco-biological features [1]. These
invertebrate-transmitted bacteria possess specialized and
diverse evolutionary adaptations that allow them to parasitize a
variety of mammalian cells of hematopoietic and bone marrow
origin or endothelium. Different species of Anaplasmataceae
cause a number of pathological conditions in humans and
animals with clinical manifestations ranging from
asymptomatic chronic persistence to acute illness and life
threatening diseases. Both the veterinary pathogens and the
invertebrate pathogens of the family Anaplasmataceae have
been discussed elsewhere in several outstanding reviews [2-8].
In this review, we highlight the biology, ecology, and
epidemiology of known human pathogens in the
Anaplasmataceae that are transmitted by ticks and belong to the
genus Anaplasma and genus Ehrlichia, and discuss the
difficulties and challenges of diagnosis and surveillance of the
diseases they cause. Finally, we describe several newly
emerging human pathogens in the family Anaplasmataceae. 

TAXONOMY AND PRIMARY CELL ASSOCIATIONS

Dumler et al. 2001 described and defined four genera,
Anaplasma, Ehrlichia, Neorickettsia and Wolbachia in the
family Anaplasmataceae while several other genotypes were
recognized as potential members that might comprise a new
genus [1]. Only the first three genera contain both pathogenic
and non-pathogenic species found in associations with different
mammals. Bergey’s Systematic Bacteriology added the genus
Aegyptionella to the family Anaplasmataceae [9]. More
recently, the genus Neoehrlichia was proposed; it currently
consists of two Candidatus species, Candidatus Neoehrlichia
mikurensis and Candidatus Neoehrlichia lotoris (Figure 1) [10,
11]. 
The genus Anaplasma includes five species of veterinary
significance only, Anaplasma marginale, A. bovis, A. centrale,
A. ovis, and A. platys. While A. phagocytophilum was long
recognized for its detrimental impact on ruminants as the
etiological agent of tick-borne fever, it is also responsible for
causing illness in humans, horses and dogs (Table 1).
Anaplasma phagocytophilum infects circulating white blood
cells of different mammals, A. platys targets platelets, and
Anaplasma marginale, A. bovis, A. ovis, and A. centrale each
have unique adaptations for infecting mammalian red blood
cells [1, 9]. Aegyptianella pullorum is most closely related to



the genus Anaplasma; it is also a tick-transmitted bacterium but
infects and replicates only in avian red blood cells [12]. The
genus Ehrlichia includes several species that appear to be
pathogenic for both humans and animals, Ehrlichia (formerly
Cowdria) ruminantium, E. canis, E. chaffeensis, E. ewingii, and
E. muris (Table 1), and a number of propagated or molecular
isolates whose pathogenic potential or taxonomic status are not
yet defined. Ehrlichia ruminantium infects primarily
endothelial cells; E. canis, E. chaffeensis and E. muris invade

and multiply in monocytes and macrophages, while E. ewingii
grows in granulocytes and neutrophils. 
The genus Neorickettsia includes Neorickettsia sennetsu
(formerly called Ehrlichia sennetsu), N. helminthoeca and N.
risticii (formerly E. risticii); these three agents are found in
association either with flukes, trematodes, snails or
metacercaria-containing aquatic insects [13, 14]. In humans or
animals infected by ingestion of infested flukes, contaminated
fish, or insects Neorickettsia grows within monocytes and
macrophages. 
In contrast, the members of the genus Wolbachia are found
widely in a tremendous variety of arthropods, including insects,
mites, termites, ticks, spiders, isopods and crustaceans and in
filarial nematodes [15]. Wolbachia pipientis is the only current
species formally designated within the genus Wolbachia
although there are at least six distinct bushy clades of these
diverse bacteria. In invertebrate hosts, Wolbachia infection is
often associated with alteration of host reproduction through
killing of male embryos, feminization of genetic males,
induction of parthenogenesis or cytoplasmic incompatibility. In
nematodes, Wolbachia is found in a mutualistic symbiotic
relationship. 

BIOLOGY AND HOST CELL INTERACTIONS

Anaplasma and Ehrlichia grow as clusters of small cocci or
pleomorphic coccobacilli in the cytoplasm of neutrophils,
granulocytes or monocytes [16, 17]. Within infected cells
Anaplasma and Ehrlichia reside inside intracytoplasmic
vacuoles where they form micro-colonies called morulae and
multiply by binary fission. The bacteria have a Gram-negative
cell wall ultra-structure; however, they do not stain well with

the Gram stain and are better visualized using Wright or
Giemsa staining. The poor retention of safronin is likely due to
other unusual characteristics of Anaplasma and Ehrlichia.
Their cell wall lacks lipopolysaccharide (LPS) and
peptidoglycan and it is rich in cholesterol acquired from the
host cell [16-18]. The bacteria are pleomorphic with their
length ranging from 0.2 to 2.0 ?m; they can be detected in two
morphologically distinct forms, dense-cored cells and
reticulate cells, most frequently seen in cultured cells, but they
can also be observed in infected blood and tick midgut cells
[16, 19-22]. 
Invasion and survival strategies are most well studied for
Anaplasma marginale, A. phagocytophilum and Ehrlichia
chaffeensis; however, more attention has been paid recently to
other members of these genera as well [23-25]. Bacteria invade
their target cells by binding to surface proteins (such as
selectins) that are often glycosylated, and they are internalized
within the endosomes via receptor-mediated endocytosis that is
regulated by cyclic di-GMP signaling [23, 26-28]. Endosomes
containing live bacteria are modified to avoid fusion with
lysosomal vesicles and do not form mature acidified
phagolysosomes. Replicative intracellular inclusions of E.
chaffeensis are early endosomes that do not mature into late

Figure 1 : Genetic relationships of different representatives of the family Anaplsmataceae based on their 16S rRNA gene sequences.  The sequences
of Rickettsia, Orientia and Escherichia coli were used as out-groups.  Scale bar correspond to the number of nucleotide substitutions per site, number
at each branch is the GenBank accession number.
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endosomes; they are often surrounded by mitochondria and
appear to inhibit mitochondrial activity [29, 30]. In contrast, A.
phagocytophilum replicative inclusions are more characteristic
of autophagosomal pathway and do not exhibit endosomal
markers [31]. These processes are manipulated by bacterial
protein synthesis and result in repression of NADPH oxidase
and scavenging of superoxide and peroxide radical in the case
of A. phagocytophilum, or selective accumulation of transferrin
receptors induced by E. chaffeensis. Due to a highly
orchestrated inhibition of host cell apoptosis, intracellular
A. phagocytophilum and E. chaffeensis are able to exploit
intracellular nutrients and to divide until the host cell bursts to
liberate bacteria which then spread and infect other white blood
cells [32]. The details of exit mechanisms have been recently
described for E. chaffeensis and E. muris [33]. Actin-mediated
formation of filopodia by infected macrophages may be crucial
for targeted delivery of Ehrlichia to neighboring cells, another
effective adaption for successful survival and evasion of host
immune systems by these bacteria. 

GENOME AND GENETIC CHARACTERISTICS

Complete genome sequences have been obtained for most
species of the family Anaplasmataceae, including Neorickettsia
spp. and A. phagocytophilum, as well as several isolates each of
A. marginale, E. chaffeensis,, E. ruminantium, E. canis and
Wolbacia spp. (table 1); furthermore, sequencing of the E.
muris genome is in the last phase of its completion [34-37]. All

of these genomes consist of a single circular chromosome,
which is largely syntenic in A. phagocytophilum and E.
chaffeensis, and are of a relatively small size and coding
capacity compared to most free-living bacteria. Members of the
family Anaplasmataceae share a number of genes whose
homologues are also found in other bacteria, while many of
their unique genes encode proteins of unknown functions and
are found only in that particular organism. Genomes of
Anaplasma or Ehrlichia spp. encode only 1,100 to 1,300
proteins [34]. Comparative analyses reveal irreversible loss of
numerous metabolic pathways including those for synthesis of
at least a dozen amino acids and many metabolites which must
be acquired from host cell pools. Genomes of A.
phagocytophilum and Ehrlichia spp. also lack the genes for
enzymes involved in glucose utilization (consistent with the
observation that these bacteria cannot utilize glucose as a
source of carbon energy) and do not contain genes that are
required for the biosynthesis of lipopolysacharide and
peptidoglycan. On the other hand, being aerobic bacteria,
Anaplasma and Ehrlichia possess conserved sets of genes
enabling pyruvate catabolism, and a complete tricarboxylic
acid cycle and electron transport chain. Anaplasma and
Ehrlichia also have genes for the biosynthesis of nucleotides
and most vitamins and cofactors, including FAD, NAD, CoA,
biotin, folate, thiamine and protohaem. 
Genomes of Anaplasma and Ehrlichia spp. encode proteins of
the type four secretion apparatus (T4SS) and two-component
systems which are differentially expressed during host cell

Table I : Characteristic features of Anaplasmataceae pathogenic for humans

Species Veterinary
Disease

Human
Disease Target cell Primary Vector Reservoir Geography Genome

Size, bp

Anaplasma
phagocytophilum

Tick-borne
fever,
Equine
anaplsmosis,
Canine
anaplasmosis

Human
anaplasmosis

Neutrophils,
granulocytes

Ticks, Ixodes
spp.

Small to
middle and
large size
mammals

Worldwide 1,471,282

Ehrlichia
chaffeensis

Canine
monocytic
ehrlichiosis

Human
monocytic
ehrlichiosis

Monocytes,
macrophages

Tick,
Amblyomma
americanum

Small rodents,
cervids,
canids

Primary in
western
hemisphere

1,005,812
1,176,248

Ehrlichia ewingii Canine
ehrlichiosis

Ewingii
ehrlichiosis

Granulocytes,
neutrophils

Tick,
Amblyomma
americanum

Small rodents,
cervids, dogs

Western
hemisphere

Not
determined

Ehrlichia muris
Murine
monocytic
ehrlichiosis

Human
monocytic
ehrlichiosis

Monocytes,
macrophages

Ticks, Ixodes
spp. Rodents, deer

Eurasia,
North-
western
USA

In progress

Ehrlichia canis
Canine
monocytic
ehrlichiosis

Human
monocytic
ehrlichiosis

Monocytes,
macrophages

Tick,
Rhipicephalus
sanguineus

Dogs, canids Worldwide 1,315,030

Ehrlichia
ruminantium Heartwater Unnamed

disease
Endothelium,
monocytes,
macrophages

Tick,
Amblyomma
variegatum, A.
hebraeum

Cattle, sheep,
goat

Africa and
West
Indies

1,499,920-
1,516,355

Ehrlichia sp.
Panola Mountain
agent

Unnamed
disease

Unnamed
disease Not determined

Tick,
Amblyomma
americanum

Deer
United
States,
West
Indies

Not
determined

Candidatus
Neoehrlichia
mikurensis

Yes Unnamed
disease Endothelium Tick, Ixodes spp. Rodents Eurasia Not

determined
Neorickettsia
sennetsu Unknown Sennetsu

ehrlichiosis Macrophages Trematode Trematode Asia 859,006



entry and intracellular development; many genes encoding
T4SS proteins are duplicated. Several genes encode proteins
containing tandem repeats (TRP32, TRP47 and TRP120
proteins in E. chaffeensis) and ankyrin domains (AnkA) which
are associated with host cell interactions and are often referred
to as virulence factors for these bacteria. 

SURFACE PROTEINS AND THEIR FUNCTIONS

The presence and expansion of genes encoding proteins
belonging to the outer membrane species-specific super-family
is another unique feature of bacteria of the family
Anaplasmataceae. Differential expression of the major surface
proteins, particularly proteins in the OMP1/MSP2/P44-P28
super-family, is the characteristic of Anaplasma and Ehrlichia
[34, 35, 38]. In A. phagocytophilum, 3 copies of omp1, 1 copy
of msp2, 2 copies of msp2 homologues, one of msp4, and 113
loci of p44 have been identified [34]. It is believed that P44
plays a central role in binding of A. phagocytophilum to the
surface of neutrophils and granulocytes. It has been suggested,
that continuing recombination of the multiple genetic copies of
p44 at a single expression site may be responsible for P44
antigenic diversity and evasion of host immune responses by A.
phagocytophilum infecting human, horses and sheep (reviewed
in [32]). Furthermore, diverse P44 genes are expressed during
different developmental stages of I. scapularis and in mice, and
in different types of experimentally infected cells, suggesting
that variable antigenic environmental adaptation occurs in A.
phagocytophilum. It appears that among the diverse antigenic
variants of P44, specific genetic loci associated with expression
in human, canine or equine host can be identified [39];
divergence of p44 sequences of the Ap-1 variant has been
clearly demonstrated [40]. The latter observation is particularly
important since Ap-1 variants of A. phagocytophilum are found
exclusively in tick and deer while other genetic variants that are
associated with human illness are found in ticks and wild mice
[20, 41]. Similarly, A. phagocytophilum strains circulating in
California exhibit significant genetic diversity and unique host
adaptations demonstrated by the susceptibility of wood-rats to
strains of different origin, and such wood-rat strains do not
cause clinical illness in horses [42].
In E. chaffeensis, 22 copies of OMP1/P28 genes are found,
while its homologue in E. canis has 25 copies [34]. Significant
genetic variations in p28 have been described among E.
chaffeensis isolates by several investigators [43-45].
Differential expression of P28 has also been described in
infected animals, macrophages and tick cell cultures; however,
it is not yet demonstrated if a recombination mechanism is
responsible for selective adaptation to eukaryotic hosts as has
been described for A. phagocytophilum [46, 47]. Other
Ehrlichia, including E. canis, E. ewingii, and E. ruminantium,
possess genomic loci with similarly arranged sets of genes
encoding for variably-expressed outer membrane surface
proteins [46, 48, 49]. Recent observations also indicate that
P44-P28 proteins can function as porins [50].

ECOLOGY AND NATURAL HISTORY

Anaplasma and Ehrlichia spp. are tick-borne agents with a
world-wide distribution. Anaplasma phagocytophilum is
maintained in zoonotic cycles between infected mammalian
host reservoirs and ticks of the Ixodes ricinus/persulcatus
complex. In the USA it is found in Ixodes scapularis in the
eastern and mid-western states, and I. spinipalpis and I.

pacificus in mountain and western coastal areas, respectively
[51]. Ixodes ricinus, I. persulcatus and I. ovatuss are the
primary vectors transmitting A. phagocytophilum in Europe
and Asia [7, 52, 53]. Other nidicolous species of Ixodes ticks
were found to be PCR positive for A. phagocytophilum l [54,
55]; however, the role of these ticks in the natural maintenance
cycle and transmission of A. phagocytophilum need further
evaluation as many of them are not known to feed on humans.
In North Africa (Morocco, Algeria and Tunisia), I. ricinus is the
main vector but Hyalomma detritum may also play a role in
transmitting A. phagocytophilum to cattle [56, 57].
Furthermore, A. phagocytophilum is likely to circulate in a
variety of ticks feeding on dogs or reptiles as observed in
Tunisia, South Africa and Ghana [57-59]. A report from Israel
indicates that A. phagocytophilum can be also detected in other
ticks, such as H. marginatum, Rhipicephalus turanicus and
Boophilus kohlsi feeding on large animals [60]. Many species
of domestic and wild animals are important reservoirs of A.
phagocytophilum. Beside cattle, sheep, , horses and dogs,
potential reservoirs include small rodents, shrews, bears,
opossums, rabbits, cervids, foxes, raccoons, wild boars,
squirrels and lizards [7, 61]. The white-footed mouse,
Peromyscus leucopus, is the primary mammalian reservoir for
A. phagocytophilum variants pathogenic for humans in the
USA [62, 63]. 
Both Ehrlichia chaffeensis and E. ewingii are mainly
transmitted by the lone star tick, Amblyomma americanum in
North America [64]. However, DNA of E. chaffeensis has also
been detected in different parts of the world in association with
D. variabilis and I. pacificus in the USA, I. ricinus and I.
persulcatus in Russia, A. testudinarium and Haemaphysalis
yeni in China, H. longicornis in South Korea and Rh.
sanguineus in Cameroon [65, 66]. However, whether any of
these tick species serve as competent vectors and amplification
hosts or this simply represents detection of ehrlichial DNA that
has been passively acquired in blood meals from infected host
animals needs further determination. The white-tailed deer is
the primary host for A. americanum and a natural reservoir of
E. chaffeensis in America [67]. Dogs are highly susceptible to
E. chaffeensis and can establish a persistent infection; however,
coyotes and raccoons are thought to be important natural
reservoirs of E. chaffeensis in the USA. Other mammals and
tick species may be responsible for its maintenance in nature
elsewhere [68]. Some reports have implicated migratory birds
as potential vehicles for dissemination of ticks infected with
ehrlichiae. Molecular evidence for E. ewingii outside the USA
has been only reported in Cameroonian Rh. sanguineus and
dogs and in a dog from Brazil [66, 69]. 
Because Anaplasmataceae are rarely and inefficiently passed
transovarially in ticks, it is commonly accepted that
perpetuation of Anaplasma and Ehrlichia primarily depends on
chronic persistence in mammalian reservoirs and horizontal
transmission between ticks and animals during every
generation of ticks [70-72]. Immature ticks acquire Anaplasma
and Ehrlichia while feeding on bacteremic animals and then
the ticks efficiently pass bacteria transstadially to the next life
stage which then can transmit to a naive mammalian host. 
As humans are infected with Anaplasma and Ehrlichia by ticks,
the geography of human cases overlaps the known endemic
areas of infected ticks and their animal hosts. Most cases are
diagnosed during the spring to early summer or fall months and
this correlates with the biological cycles of feeding of
overwintering infected adult ticks and nymphs infected as
larvae. Human anaplasmosis and ehrlichioses have been
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reportable in the USA since the early days of their recognition
(1987-1993) possibly due to the significant mortality and
morbidity observed in the first recognized cases [73]. Passively
collected surveillance data show a steadily increasing trend in
the number of annual cases which has reached 1,026 cases of
human granulocytic anaplasmosis (HGA) and 1,137 cases of
human monocytic ehrlichiosis (HME) in 2008 but no
associated increases in the rates of mortality due to effective
recognition and treatment of most cases [74]. Furthermore, it is
probable that the actual incidence and distribution of diseases
is significantly greater than that reported in passive
surveillance data. 
Outside the USA, human anaplasmosis has recently become
formally reportable only in China; therefore extrapolations
regarding the incidence and prevalence of anaplasmosis and
ehrlichioses in other regions of the world depend upon a
limited number of laboratory-confirmed cases and the
geographically restricted serosurveys reported in the literature
[75-79]. Based on this information HGA appear to be
infrequent infection in most countries. The temporal
distribution and demographic characteristics of the populations
infected are similar in the USA and other countries. 
Rarely infections with A. phagocytophilum may also occur
through blood transfusion and organ transplantation, and
nosocomial and perinatal transmission [80-82]. Inhalation of
aerosolized blood has been implicated as another route of
infectious exposure to A. phagocytophilum [83].

CLINICAL DISEASE, DIAGNOSIS AND TREATMENT

Human anaplasmosis and ehrlichioses are acute illnesses that
occur 5 to 21 days (average 10 days) after the bite of an
infected tick [63, 73, 84]. The severity ranges from
asymptomatic seroconversion to a mild or severe febrile illness
to multisystem organ failure in the case of human monocytic
ehrlichiosis. The triad of fever (>101oF/38oC), headache and
myalgia are the most common clinical manifestations. Other
symptoms include nausea, vomiting, abdominal pain, diarrhea,
arthralgias and respiratory symptoms. Involvement of the
central nervous system is variable being reported in 2 to 29%
of patients suffering with HME; however it is rare during the
course of HGA [84-86]. Rash is not typically associated with
anaplasmosis; however, published data indicate that it is
observed in children suffering from HME and may appear in 17
to 67% of diagnosed cases [87, 88]. Basic laboratory findings
include thrombocytopenia, leucopenia, and moderately
increased concentrations of hepatic alanine and aspartate
aminotransferases and lactic dehydrogenase without increase
of bilirubin; elevation of the C-reactive protein concentration is
typical for HGA patients [87-89].
Fatalities due to A. phagocytophilum infections are rare (0.7%)
and typically arise from complicating opportunistic viral or
fungal infections, advanced age, immunosuppression, or severe
preexisting medical conditions [63, 84]. Furthermore, it has
been suggested that elevated blood cholesterol levels may also
increase the severity of this infection [90]. Many of HGA
patients in the USA are hospitalized, and some of those require
treatment in an intensive care unit [63, 84]. The overall case-
fatality rate is 2-3% in patients infected with E. chaffeensis;
life-threatening complications and death are most frequent in
patients who are immune-compromised and elderly people [91-
93]. It was originally believed that patients with underlying
immunodeficiency are at primary risk of acquiring E. ewingii
ehrlichiosis; however, immune-competent individuals can

experience the disease with similar course and clinical
manifestations [94]. The clinical features of HGA outside the
USA are harder to assess because of the limited number of
reported cases; however, it is typically described as a low
morbidity illness [76, 95]. Similarly, E. chaffeensis is rarely
implicated as an etiological agent outside the USA. Indeed,
suspected cases of HME may be due to infections caused by E.
muris or antigenically related agents but mistakenly interpreted
as E. chaffeensis ehrlichiosis due to their serologic cross-
reactivity [96]. 
Accurate diagnosis of anaplasmosis and ehrlichioses requires
laboratory confirmation that should be attempted during the
acute stage of illness to avoid possible subsequent clinical
complications [92, 97-99]. Presumptive etiological diagnosis
can be established by detection of morulae within the
cytoplasmic vacuoles in peripheral blood neutrophils or
monocytes. Confirmatory diagnosis requires
immunohistochemical demonstration of bacteria in tissues or
peripheral blood, or sequence confirmed PCR detection of
bacterial nucleic acids in peripheral blood. Serologic detection
of immunoglobulin G (IgG) and IgM antibodies reactive with
A. phagocytophilum or E. chaffeensis and a 4-fold titer increase
between acute and convalescent serum allows only
retrospective diagnosis of exposure because of the time
required for this seroconversion. Similarly, culture isolation
from the peripheral blood in a suitable cell culture system
allows definitive confirmation; however, its retrospective
character limits its practical utility in clinical practice. Each
method has its benefits and disadvantages, and guidance for
their use has been discussed in detail by several authors [97, 99,
100]. A combination of results obtained using different acute
tests increases the probability of accurate diagnosis of
anaplasmosis and the ehrlichioses thus benefiting proper
patient management and timely recovery. Retrospective
confirmation is essential for improved discrimination of its
acute differential clinical diagnosis particularly when PCR
diagnosis is not available. However, species-specific serologic
confirmatory testing is not available for E. ewingii due to the
lack of an established isolate.
For optimal diagnostic results with tests performed during the
acute stage of illness, samples must be collected prior to the
initiation of antibiotic therapy and no later than 24-48 hr after
appropriate treatment has begun. Common requirements for
laboratory confirmed and probable cases of human
granulocytic anaplasmosis and ehrlichioses and their
applicability to surveillance of these diseases are described by
the USA Council of State and Territorial Epidemiologists
(http://www.cste.org/ps2009/09-ID-15.pdf). In Europe, similar
case definitions and recommendations were developed by the
European Society of Clinical Microbiology and Infectious
Diseases study group for Coxiella, Anaplasma, Rickettsia and
Bartonella (ESCAR-ESCMID) and European Network for
Surveillance of Tick-Borne Diseases [101].
Doxycycline is the primary drug of choice for therapeutic
treatment of anaplasmosis and ehrlichioses in all categories of
patients [73]. These recommendations are primarily based on
in vitro antibiotic susceptibility testing and empirical
retrospective clinical data. Antibiotic treatment should be
continued for 7 to 10 days (for at least 3 to 5 days after
defervescence); however, the optimal duration of therapy has
not been determined yet. There are limited data on successful
use of rifampin in pediatric patients and pregnant women.
Unfortunately, the effectiveness of rifampin therapy or other
antibiotic regimens for treatment of anaplasmosis and
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ehrlichioses have not been evaluated in controlled prospective
studies (reviewed in [102]). Use of sulfa-containing drugs is
responsible for severe forms of illness; likely due to unknown
interactions beyond the established in vitro resistance of A.
phagocytophilum and E.chaffeensis to cotrimoxazole [103,
104]. Anaplasma and Ehrlichia are also resistant to beta-
lactams, macrolides and ketolides [103]. 

EMERGING PATHOGENS 

Anaplasma and Ehrlichia emerged as human pathogens in the
late 1980s and early 1990s. The resultant increased attention
given to all bacteria in the family Anaplasmataceae and the
diseases they cause, the continuous alert mounted by the
medical community, extended surveillance of wildlife, and
development of novel diagnostic tools has resulted in
expansion of the number of known human pathogens in the last
several years [73, 101, 105]. This trend has coincided with an
increasing incidence of other tick-borne diseases and the
recognition of new emerging tick-borne etiological agents [79,
105, 106]. At least four new species from the family
Anaplasmataceae have been implicated as causes of human
illness in different geographic regions. Ehrlichia canis has been
recognized as the etiologic agent of canine monocytic
ehrlichiosis since 1935, and it occurs worldwide. Recently,
human cases due to E. canis with positive PCR identification
were reported in Venezuela; these cases were all associated
with dog handling [107]. The variant of E. canis implicated as
the human etiological agent appears to be genetically different
from the type strain of E. canis typically causing canine illness.
Furthermore, the patients did not mount any significant
antibody response as typically observed for human or canine
monocytic ehrlichiosis.
Ehrlichia muris and related Ehrlichia agents found in Ixodes
ticks from Japan and Russia have been long referred to as likely
etiological causes of murine ehrlichiosis [108-111]. PCR
diagnosis has sporadically implicated E. muris as a cause of
febrile illness in Russian patients [96, 112], and more recently,
a genetically similar Ehrlichia sp. has been found to infect
people in the Mid-Western USA states [113], a region which is
one of the two primary USA areas endemic for human
granulocytic anaplasmosis. These findings suggest that human
ehrlichiosis due to E. muris may occur widely in Eurasia, since
this ehrlichia is found in ticks and animals from Slovakia to
China and Japan [114, 115]. Similarly, 1-2% of healthy donors
in Japan were seropositive to E. muris or an antigenically
related bacterium; while 10% of febrile patients from the Perm
region of Russia, an endemic area of I. persulcatus had
antibodies reactive with E. chaffeensis antigen [96, 116]. 
Another enigmatic Ehrlichia sp. was originally found in I.
ricinus ticks from the Netherlands and referred to as Schotti
variant. Later it was described as a novel genus and species,
Candidatus Neoehrlichia mikurensis and first isolated from a
rodent [10]. Different genetic types of this microorganism have
been identified in European and Asian populations of ticks
based on its GroEL gene sequence [117]. Three independent
2010 publications from Germany, Sweden and Switzerland
diagnosed severe illness due to this agent by PCR in 10 patients
[117-119]. In contrast to the characteristic clinical
manifestations and clinical findings of HGA or HME, these
patients experienced severe coagulative disorder and
thrombosis likely due to involvement of the endothelium
affected by invasion, growth and spread of this Neoehrlichia.
Finally, the important heart-water agent, E. ruminantium, was

identified as an etiologic agent in several human cases from
South Africa [120]. Unfortunately, none of these reports from
Africa have yet been published in the peer-reviewed literature,
so additional investigations should be forthcoming. Loftis et al.
reported detection of the so-called Panola Mountain Ehrlichia
agent in Amblyomma spp. ticks from the United States,
Caribbean islands and Africa [121, 122]. This organism
appears to cause a mild febrile illness in humans and cervids
[123, 124]. The most striking feature of this yet unnamed
bacterium is its genetic and antigenic similarity to rodent-tropic
isolates of E. ruminantium [125].
While new Anaplasma species causing human disease have not
been described, the tremendous diversity and adaptability of A.
phagocytophilum to different animal hosts is now well
documented. Precisely what distinguishes the human
pathogenic variants from those that are non-pathogenic
remains elusive.

FUTURE PERSPECTIVES

Our expanding knowledge of the emerging human pathogens in
the family Anaplasmataceae has not only raised questions
about the true prevalence of these under-reported diseases but
it has also highlighted significant unresolved problems in the
appropriate diagnosis, surveillance, and treatment of these
diseases. The clinical manifestations of known anaplasmosis
and different ehrlichioses in humans are overlapping and non-
specific so accurate clinical diagnosis, especially in the acute
phase, is difficult without proper laboratory methods. However,
even the most efficient diagnostic methods available are either
useful only during a very short period of acute disease (such as
PCR) or effective only retrospectively. Serologic testing often
provides the sole data available but it is ineffective for
differentiation of Anaplasma and Ehrlichia species due to their
significant antigenic cross-reactivity within a genus and
between genera. Little cross-reactivity exists between
Neoehrlichia and these genera but antigenic cross-reactivity of
other emerging agents of Anaplasmataceae is unknown. There
is a need for development of more rapid and sensitive point-of-
care diagnostic methods, particularly new DNA detection tools
that may be used during the acute stage of infection. There is
also room for development of more sensitive and reliable
serological assays than IFA testing. Since several tick-borne
agents may be present in the same tick, possible mixed
infections with unusual clinical manifestations might require
access to immediate assays for detection of Anaplasma,
Ehrlichia, Rickettsia, Bartonella, Borrelia and Babesia, or
multiplexed assays that may be more clinically useful by
reducing costs and increasing physician interest in addressing
ambiguous clinical findings. This approach may lead to
discovery of new tick-borne disease agents that will pose yet
another set of challenges for veterinary, medical and public
health specialists, and for fundamental studies of the evolution
of this fascinating family of intracellular bacteria. 
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