Minimizing the Variance of Fulfillment Cycle Time in a Central Fill Pharmacy: Why and How

Mohamed El Tonbari and Leon McGinnis
Keck Virtual Factory Lab, Georgia Tech

The problem: number of pharmacies served is much larger than the number of lanes in the sortation system, AND, orders arrive continuously through the day. => wave picking

The problem: While there may be distinct boundaries between waves at release, the variability of fulfillment cycle time causes “wave overlap”

The proposal: assign NDC to dispense channel to minimize the variance of fulfillment cycle time.

An “ideal” system (constant travel time between cells with “adjacent” travel times, we can prove that an “organ pipe arrangement” (OPA) minimizes the variance of travel time. The proof is tedious and boring.

Can use the OPA even when the time between adjacent cells (in travel time order) is not constant to get a heuristic solution. Can use pairwise interchange, based on specific conditions, to try to improve the solution.

A companion effort has almost completed the development of a simulation testbed where we can evaluate the actual impact of the proposal, in terms of minimizing the “wave overlap”.

Variable component of fulfillment cycle time is travel time on the high speed filler and robotic arm travel

Can use the OPA even when the time between adjacent cells (in travel time order) is not constant to get a heuristic solution. Can use pairwise interchange, based on specific conditions, to try to improve the solution.

A companion effort has almost completed the development of a simulation testbed where we can evaluate the actual impact of the proposal, in terms of minimizing the “wave overlap”.

Variable component of fulfillment cycle time is travel time on the high speed filler and robotic arm travel

Can use the OPA even when the time between adjacent cells (in travel time order) is not constant to get a heuristic solution. Can use pairwise interchange, based on specific conditions, to try to improve the solution.

A companion effort has almost completed the development of a simulation testbed where we can evaluate the actual impact of the proposal, in terms of minimizing the “wave overlap”.

Variable component of fulfillment cycle time is travel time on the high speed filler and robotic arm travel

Can use the OPA even when the time between adjacent cells (in travel time order) is not constant to get a heuristic solution. Can use pairwise interchange, based on specific conditions, to try to improve the solution.

A companion effort has almost completed the development of a simulation testbed where we can evaluate the actual impact of the proposal, in terms of minimizing the “wave overlap”.

Variable component of fulfillment cycle time is travel time on the high speed filler and robotic arm travel

Can use the OPA even when the time between adjacent cells (in travel time order) is not constant to get a heuristic solution. Can use pairwise interchange, based on specific conditions, to try to improve the solution.

A companion effort has almost completed the development of a simulation testbed where we can evaluate the actual impact of the proposal, in terms of minimizing the “wave overlap”.

Variable component of fulfillment cycle time is travel time on the high speed filler and robotic arm travel

Can use the OPA even when the time between adjacent cells (in travel time order) is not constant to get a heuristic solution. Can use pairwise interchange, based on specific conditions, to try to improve the solution.

A companion effort has almost completed the development of a simulation testbed where we can evaluate the actual impact of the proposal, in terms of minimizing the “wave overlap”.

Variable component of fulfillment cycle time is travel time on the high speed filler and robotic arm travel

Can use the OPA even when the time between adjacent cells (in travel time order) is not constant to get a heuristic solution. Can use pairwise interchange, based on specific conditions, to try to improve the solution.

A companion effort has almost completed the development of a simulation testbed where we can evaluate the actual impact of the proposal, in terms of minimizing the “wave overlap”.

Variable component of fulfillment cycle time is travel time on the high speed filler and robotic arm travel

Can use the OPA even when the time between adjacent cells (in travel time order) is not constant to get a heuristic solution. Can use pairwise interchange, based on specific conditions, to try to improve the solution.

A companion effort has almost completed the development of a simulation testbed where we can evaluate the actual impact of the proposal, in terms of minimizing the “wave overlap”.

Variable component of fulfillment cycle time is travel time on the high speed filler and robotic arm travel

Can use the OPA even when the time between adjacent cells (in travel time order) is not constant to get a heuristic solution. Can use pairwise interchange, based on specific conditions, to try to improve the solution.