
Georgia Southern University Georgia Southern University

Georgia Southern Commons Georgia Southern Commons

Department of Logistics & Supply Chain
Management Faculty Publications

Department of Logistics and Supply Chain
Management

2008

Maximizing Correlation in the Presence of Missing Data Maximizing Correlation in the Presence of Missing Data

Xinfang Wang
Georgia Southern University, xfwang@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/logistics-supply-

facpubs

 Part of the Business Administration, Management, and Operations Commons, and the Operations and

Supply Chain Management Commons

Recommended Citation Recommended Citation
Wang, Xinfang. 2008. "Maximizing Correlation in the Presence of Missing Data." Applied Mathematical
Sciences, 2 (54): 2653-2664.
https://digitalcommons.georgiasouthern.edu/logistics-supply-facpubs/43

This article is brought to you for free and open access by the Department of Logistics and Supply Chain
Management at Georgia Southern Commons. It has been accepted for inclusion in Department of Logistics &
Supply Chain Management Faculty Publications by an authorized administrator of Georgia Southern Commons. For
more information, please contact digitalcommons@georgiasouthern.edu.

https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/logistics-supply-facpubs
https://digitalcommons.georgiasouthern.edu/logistics-supply-facpubs
https://digitalcommons.georgiasouthern.edu/logistics-supply
https://digitalcommons.georgiasouthern.edu/logistics-supply
https://digitalcommons.georgiasouthern.edu/logistics-supply-facpubs?utm_source=digitalcommons.georgiasouthern.edu%2Flogistics-supply-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/logistics-supply-facpubs?utm_source=digitalcommons.georgiasouthern.edu%2Flogistics-supply-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/623?utm_source=digitalcommons.georgiasouthern.edu%2Flogistics-supply-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1229?utm_source=digitalcommons.georgiasouthern.edu%2Flogistics-supply-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1229?utm_source=digitalcommons.georgiasouthern.edu%2Flogistics-supply-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/logistics-supply-facpubs/43?utm_source=digitalcommons.georgiasouthern.edu%2Flogistics-supply-facpubs%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

Applied Mathematical Sciences, Vol. 2, 2008, no. 54, 2653 - 2664

Maximizing Correlation in the Presence of

Missing Data

Xinfang (Jocelyn) Wang

Department of Finance and Quantitative Analysis
College of Business Administration, P. O. Box 8151

Georgia Southern University
Statesboro, GA 30460-8151, USA
xinfang.jocelyn.wang@gmail.com

Abstract

In this paper we address the problem of maximizing the correlation between two
vectors of time series data, when one of the vectors has missing data and the
timing of the missing data is unknown. The motivation for this work comes from
environmental monitoring where because of monitoring malfunction, some data
are lost. We study the use of integer programming and a genetic algorithm (GA)
for this problem.

Keywords: Integer programming; combinatorial optimization; genetic algorithm;
missing data

1. Introduction

 The problem we study concerns two vectors of time series data of two
variables known to be strongly positively correlated. Due to one or more data
collection errors, for example the random failure of a monitoring device, one of
the vectors used has missing data, causing it to be “shorter” than the other vector.
Knowing that the two vectors are strongly correlated, we seek to know where to
insert zeros in the shorter vector, so as maximize the correlation with the longer
vector. We need to insert zeros into the shorter vector so as to preserve the order
of the elements, but the positions of the zeros must be made such that the dot
product of the two vectors (and hence the correlation between the two vectors) is
maximized.
 The motivation for this work comes from environmental monitoring where
because of monitoring malfunction, some data are lost. Our work is related to

2654 Xinfang (Jocelyn) Wang

signal matching in paleoclimate reconstructions where chronostratigraphic
correlation among records needs to be recovered. This is often achieved by
matching signals between climate proxies and orbital parameters or between
multiple climate proxies [1]. A simplified example of signal matching can be
stated as follows: n data points in a series A are matched to the m points in the
series B so that the square of their differences can be minimized. Both series A
and B are proxy records and continuously distributed. Provided that the
sequence of points in both series is preserved, the points in series A are allowed
to fall between points in series B and linear interpolation is applied in this case.
Lisiecki and Lisiecki [1] applied the dynamic programming approach to solve the
signal-matching problem. Each series of record is divided into several hundreds
of intervals and a score, mainly determined by the sum square of the difference
between two series, is calculated for all feasible alignments of these intervals.
The dynamic program is designed to search for the optimal alignment which
results in the lowest accumulative score. Our problem differs from the signal-
matching problem in terms of the data type. Our problem has the discrete data
and signal-matching problem has continuous data.

 As an example of the problem we address, consider the situation where two
signals are taken at constant time intervals. The second measuring device fails
randomly and we retrieve from it a shorter vector of data. The long vector is of
length 20, but the second vector, because of nine randomly missing data points,
contains only 11 elements. The long vector and short vector are [0 1 0 3 7 4 6 5 9
6 7 4 3 9 5 9 7 1 6 2] and [3.34 7.47 4.72 6.84 5.32 9.19 9.89 5.91 9.66 7.55
2.41], respectively. The timing of the short vector is unknown, only the order of
the data is preserved. The two series are known to be highly correlated and we
would like to use this fact to impute zeros for the missing values into the short
vector of data so as to ascertain the timing of the data values. In order to
maximize the correlation, we must maximize the dot product of the two vectors.
Ignoring the problem of missing data, that is, taking the first 11 elements and
pairing them with the first 11 elements of the larger vector results in a dot product
of 340.2 and a matching of the data streams as shown in Figure 1. The optimal
insertion of zeros results in a dot product of 522.7 as shown in Figure 2. Our goal
in this paper is to develop a systematic approach to solving this problem.

Maximizing correlation in the presence of missing data 2655

 Figure 1: Series 1 has 20 elements, but series 2 is missing 9 elements.

-2

0

2

4

6

8

10

12

0 5 10 15 20 25

Time

Si
gn

al Series1
Series2

Figure 2 The optimal insertion of zeros into the shorter vector.

-2

0

2

4

6

8

10

12

0 5 10 15 20 25

Time

Si
gn

al Series1
Series2

In section 2 we provide a binary integer programming formulation of the
missing data problem. In section 3, we develop a genetic algorithm for large
instances. Section 4 shows computational results comparing the integer program
and genetic algorithm. Section 5 is our summary and conclusion.

2656 Xinfang (Jocelyn) Wang

2. Model formulation

First, we model the discrete vector missing data problem previously described

using an integer program.
Let m be the number of elements in long vector and the set M= {1,2,….m}

n be the number of elements in short vector (m > n) and the set
N={1,2,..n}

τj be the jth element in long vector, j ∈ M
αi be the ith element in short vector, i ∈ N
Wij = αi*τj i ∈ N, j ∈ M

We also introduce the following sets, which concern the feasible pairings of
elements in the short vector with elements in the long vector:
 Ri = {i, i+1,…(m + n - 1)} i ∈ N
 Lj = {1,2,…..j} for j < n
 {1,2,….n} for n ≤ j ≤ m - n +1
 {(n - m + j), …n} for j > m – n +1 j ∈ M
Note that Ri contains the set of all feasible slots for which the ith element of the
short vector can be paired in the long vector. Likewise, Lj contains the set of all
possible assignments of short vector elements for element j in the long vector. In
the integer program that follows, we create variables only over these feasible sets.
 Let Xij = 1 if the ith element of the short vector is paired with the jth element of
the long vector, 0 if not, i ∈ N, and j ∈ Ri. The objective function and constraints
are as follows:

i

i

j

ij ij
i N j R

ij
j R

ij
i L

m n i 1

ij i 1,k
k j

Max W X (1)

s.t.
X 1 i N (2)

X 1 j M (3)

X X 1 i 2,...n j i,...(m n i 1) (4)

∈ ∈

∈

∈

− + −

−
=

= ∈

≤ ∈

+ ≤ = = − + −

∑∑

∑

∑

∑

The objective function (1) is to maximize the dot product. Constraint set (2)
specifies that each one of the elements in the short vector must be paired with
exactly one of the elements in the long vector. Constraint set (3) specifies each
one of the elements in the long vector can be paired with at most one element in
the short vector. Note that by construction, the missing values of data in the short
vector are assumed to have no value. Their places in the vector are recognized by
the fact (3) is nonbinding, that is, no element from the short vector was assigned
to the spot in the long vector. Constraint set (4) forces the sequence of the
original elements of the short vector to be maintained. In summary, the program
(1)-(4) pairs the elements of the short vector with elements of the long vector,

Maximizing correlation in the presence of missing data 2657

preserving the order of elements so as to maximize the dot product of the two
vectors.

Attempts to solve (1) - (4) with off-the-shelf code indicated that the IP can be
very difficult to solve for larger problems. We therefore also test a genetic
algorithm as detailed in the next section.

3. A Genetic Algorithm

Genetic algorithm (GA) was first proposed by Holland [2]. GA is a popular

meta-heuristic that has been successfully applied to many hard problems
determined to be too difficult for the traditional mathematical programming
method [3]. The fundamental steps followed in a GA are similar to the genetic
evolution of a species [4]. A GA starts with an initial population of solutions (in
this case a population of feasible dot product solutions) which are generated
either randomly or by some simple heuristic. By applying genetic operators
(reproduction, crossover and mutation) to this population, a child generation of
solutions is created and added to the original population. The fitness of each
member of the resulting population is evaluated. Based on the fitness score,
various selection rules can be implemented to select members for carrying over to
the next generation. The entire cycle is repeated until a pre-specific stopping
criterion (e.g., a certain number of iterations) is reached. Next, we present a
genetic algorithm for the problem by means of pseudocode and discuss the
appropriate coding scheme and necessary modifications to the standard operators
for application to the problem.
Step 0: Input a dot product problem with a long vector (β) of length m and a
short vector (α) of length n
Step 1: 0i ←
Step 2: Generate initial population pool ()PopPool i randomly
Step 3: Apply guided mutation operator to each string in ()PopPool i
Step 4: 1i i← +
Step 5: Select 30 fittest strings from (1)PopPool i − to create ()PopPool i
Step 6: If (/ 3)i floor m= , stop. Otherwise go to Step 3.

We employ the standard binary string representation of the dot product
solutions. Suppose one is interested in a dot product problem with a long vector
of size 5 and a short vector of size 3. A string can be represented as [11100] ,
which means the first three elements from the long vector are selected in their
original order to pair with the 3 elements in the short vector. The resulting dot
product is an evaluation of the fitness of the string. In general, a string has m
bits, of which m n− are zeros and n are ones.

Operator crossover destroys the feasibility of candidate solutions, and is left
out of the GA. All 30 strings in the population are subject to mutation in step 3.
Without crossover, each individual population element explores the solution
space without interaction. We have created a guided mutation operator to

2658 Xinfang (Jocelyn) Wang

produce candidate solutions with better fitness. A guided mutation on string C is
done as follows: let the set 0 { | [] 0, j }J j C j M= = ∈ be the bits in a string C that
have a value of 0 and the set 1 { | [] 1, j }J j C j M= = ∈ be the remaining bits that
have a value of 1. Furthermore, we define set 0A J∈ that has the

(() / 3)ceiling m n− largest elements in jβ and set 1B J∈ that has the
(/ 3)ceiling n smallest elements in jβ . We flip two bits namely []C a and []C b at

a time, where a A∈ and b B∈ . After the guided mutation, each string C in the
population pool generates additional (() / 3)* (/ 3)ceiling m n ceiling n− strings.
Only the best-fitted 30 strings out of the original population and newly created
ones are carried over the next generation in Step 5. The stopping rule is a pre-
specified fixed number of / 3m generations in step 6.

4. Computational results

In this section, we test CPLEX applied to (1) – (4) and the GA described in the

previous section. We consider nine different problem sizes in terms of lengths of
the two vectors, as shown in Table 1. We make the conjecture that the variance of
vector values might also affect the complexity of the problem. Therefore, for
each problem size, we consider two sets of data, drawing from uniform
distribution [1, 9] and [1, 99] respectively. We have a total of eighteen problem
instances. For each of the eighteen instances, we consider five replications.
Therefore, we have a total of ninety test problems.

Table 1. Nine sets of test problems.

Problem Length of
long vector

Length of
short vector

1 50 10
2 50 25
3 50 40
4 100 20
5 100 50
6 100 80
7 200 40
8 200 100
9 200 160

All computational work was carried on a Dell Dimension 8100 machine with

memory of 512MB. The IP solver used is CPLEX 8.0. The genetic algorithm is
coded in C++. A time limit of 10,080 seconds (3 hours) was imposed on both
methods in our test. The computational times for the IP model may be possibly
reduced further by using preprocessing directives available in CPLEX solver.

Maximizing correlation in the presence of missing data 2659

We tried different preprocessing options available and found that adding the
probe option to CPLEX is the most effective one. There are three levels of
probing available in CPLEX and based on pre-testing, we set the ‘Probe’ level to
2. The computational results from solving ninety test problems using CPLEX
and GA are presented in Table 2.
Table 2. Performance comparison of IP and GA.

Problem Set Rep. IP Time
IP

Solution
GA

Time
GA

Solution
GA % of
Optimal

1 1 1 1.4 463 0.1 463 100.0%
1 1 2 1.2 432 0.1 432 100.0%
1 1 3 1.2 422 0.1 422 100.0%
1 1 4 1.2 321 0.1 321 100.0%
1 1 5 1.2 505 0.1 505 100.0%
1 2 1 1.3 46389 0.1 46389 100.0%
1 2 2 1.2 36889 0.1 36889 100.0%
1 2 3 1.2 37888 0.1 37888 100.0%
1 2 4 1.2 48736 0.1 48736 100.0%
1 2 5 1.2 41713 0.1 41713 100.0%
2 1 1 1.7 980 0.1 980 100.0%
2 1 2 1.7 984 0.1 984 100.0%
2 1 3 1.7 809 0.1 809 100.0%
2 1 4 1.7 881 0.1 881 100.0%
2 1 5 1.7 1013 0.1 1013 100.0%
2 2 1 2 103280 0.1 103280 100.0%
2 2 2 1.8 74953 0.1 74917 100.0%
2 2 3 1.8 91154 0.1 91154 100.0%
2 2 4 1.8 100037 0.1 100037 100.0%
2 2 5 1.8 101118 0.1 101118 100.0%
3 1 1 0.6 1257 0.1 1251 99.5%
3 1 2 0.6 1333 0.1 1333 100.0%
3 1 3 0.4 1211 0.1 1211 100.0%
3 1 4 0.5 1353 0.1 1346 99.5%
3 1 5 0.6 1308 0.1 1308 100.0%
3 2 1 0.5 134686 0.1 134686 100.0%
3 2 2 0.4 106767 0.1 106767 100.0%
3 2 3 0.4 124479 0.1 124479 100.0%
3 2 4 0.6 135992 0.1 134983 99.3%
3 2 5 0.4 143669 0.1 143195 99.7%
4 1 1 40.9 793 0.9 793 100.0%
4 1 2 41.1 883 0.9 883 100.0%
4 1 3 41.2 922 0.9 922 100.0%
4 1 4 41 717 0.9 717 100.0%
4 1 5 41.4 809 0.9 809 100.0%
4 2 1 41.8 100101 0.9 100101 100.0%
4 2 2 42 93166 0.9 93166 100.0%
4 2 3 41.7 86591 0.9 86591 100.0%
4 2 4 42.1 94678 1 94678 100.0%
4 2 5 42.3 112987 0.9 112987 100.0%
5 1 1 69.1 2033 1.5 2027 99.7%
5 1 2 70.5 1868 2.1 1865 99.8%
5 1 3 70.6 1919 1.7 1907 99.4%
5 1 4 69.4 1659 1.6 1656 99.8%
5 1 5 70.5 2028 1.6 2016 99.4%
5 2 1 71.1 209293 1.5 208892 99.8%
5 2 2 70.7 212459 1.5 210879 99.3%
5 2 3 70.6 215405 1.5 213373 99.1%
5 2 4 71.1 213500 1.5 212826 99.7%
5 2 5 72.6 232743 1.5 232471 99.9%

2660 Xinfang (Jocelyn) Wang

Table2(Continued).

Problem Set Rep. IP Time
IP

Solution
GA

Time
GA

Solution
GA % of
Optimal

6 1 1 7.2 2696 1 2687 99.7%
6 1 2 12.7 2494 1 2482 99.5%
6 1 3 7.6 2596 1 2581 99.4%
6 1 4 8.2 2364 1 2352 99.5%
6 1 5 10.5 2750 1 2729 99.2%
6 2 1 9.6 285640 1 281889 98.7%
6 2 2 9.2 250877 1 248215 98.9%
6 2 3 8.6 279490 1 276349 98.9%
6 2 4 9.1 278705 1 277315 99.5%
6 2 5 7.1 300950 1 300108 99.7%
7 1 1 1432 1741 17.3 1738 99.8%
7 1 2 1703.5 1832 17.4 1827 99.7%
7 1 3 1793.1 1756 16.3 1754 99.9%
7 1 4 1781.1 1702 16.2 1702 100.0%
7 1 5 1808 1431 16.7 1427 99.7%
7 2 1 1860 182005 17.5 181831 99.9%
7 2 2 1837.8 196216 16.4 195918 99.8%
7 2 3 1813.4 181227 16.6 180894 99.8%
7 2 4 2106.2 193235 17.4 192926 99.8%
7 2 5 1709.5 195020 20.8 194593 99.8%
8 1 1 2820.7 3925 27.9 3909 99.6%
8 1 2 2622.2 3809 27.7 3749 98.4%
8 1 3 2181 4023 27.7 4005 99.6%
8 1 4 2352.2 3502 28.3 3493 99.7%
8 1 5 2292.3 3595 41.5 3567 99.2%
8 2 1 2310.4 389377 30.9 388043 99.7%
8 2 2 2319.8 408589 31.9 401460 98.3%
8 2 3 2259.9 380120 34.6 374702 98.6%
8 2 4 2183.2 419711 28.3 414625 98.8%
8 2 5 2221.5 405990 31.9 402594 99.2%
9 1 1 443 5190 17.4 5135 98.9%
9 1 2 461.6 5204 18.1 5166 99.3%
9 1 3 444.1 5293 18.2 5233 98.9%
9 1 4 441.1 4826 17.5 4730 98.0%
9 1 5 440.9 5244 17.8 5209 99.3%
9 2 1 463.9 533016 18.7 527409 98.9%
9 2 2 459 552942 17.4 547113 98.9%
9 2 3 458.9 505802 17.2 495152 97.9%
9 2 4 462 582159 17.7 569619 97.8%
9 2 5 454 594118 17.5 591083 99.5%

While the IP model has the capability of solving all problem instances within

the time limit, the average solution times for problems 7 and 8 are long. GA
performs well on all problems in terms of solution time and quality as shown in
Table 3 (results are averaged over 10 instances for each problem set). It is
especially effective for solving the “hard” problems 7 and 8 by reducing the time
down to tens of seconds and providing solution within 1% of the optima.

Maximizing correlation in the presence of missing data 2661

Table 3. Average Computational Time for various problem sizes.

Problem M N IP Time GA Time GA Solution /
Optimal IP

1 50 10 1.2 0.1 100%
2 50 25 1.8 0.1 100%
3 50 40 0.5 0.1 99.80%
4 100 20 41.5 0.9 100%
5 100 50 70.6 1.6 99.60%
6 100 80 9.0 1.0 99.30%
7 200 40 1784.5 17.3 99.80%
8 200 100 2356.3 31.1 99.10%
9 200 160 452.9 17.7 98.80%

As we mentioned earlier, the ‘Probe’ option in CPLEX can lead to reductions in
problem size, but require more computer time and therefore total solving time
may increase or decrease. We ran the IP model without using the “Probe” option
to test its effectiveness on different test problems. The resultant model decreases
the total solution time for those “easy” problems (1, 2, 3, 4, and 6) slightly. This
is because the probing time spent in reducing the problem size cannot be justified
by the time saved in solving the reduced problem. On the other hand, probing
contributes to a significant reduction in solution time for problems 5, 7, 8, and 9.
The time spent on probing pays off because the reduction in problem size leads to
a significant reduction in the search space.

 As shown in Table 4, the variance of the vector elements (Set 1 versus Set 2)
does not appear to significantly affect the solving time of either method or the
solution quality.

2662 Xinfang (Jocelyn) Wang

Table 4. Average computational results for low variance (Set 1) and high
variance (Set 2) for different problems sizes.

Problem Set IP Time GA
Time

GA %
Optimal

1 1.2 0.1 100%
2 1.2 0.1 100%

1 1.7 0.1 100%
2 1.8 0.1 100.0%

1 0.6 0.1 99.8%
2 0.5 0.1 99.8%

1 41.1 0.9 100%
2 42.0 0.9 100%

1 70.0 1.7 99.6%
2 71.2 1.5 99.5%

1 9.2 1.0 99.5%
2 8.7 1.0 99.1%

1 1703.6 16.8 99.8%
2 1865.4 17.7 99.8%

1 2453.7 30.6 99.3%
2 2259.0 31.5 98.9%

1 446.1 17.8 98.9%
2 459.6 17.7 98.6%

1

2

3

4

9

5

6

7

8

The performance of the IP model with CPLEX varies in response to the

problem complexity. As seen in Table 3, for any given length of the long vector,
the problem is hardest for CPLEX when the short vector is half the size of the
long vector. In our test problems, given the size of 50, 100, and 200 for the long
vector, it took the IP model the longest to solve when the lengths of short vectors
are 25, 50, and 100 respectively. This makes sense in that the maximum number

of feasible solutions of the IP model is
m

m n
⎛ ⎞
⎜ ⎟−⎝ ⎠

 and it is the biggest when

/ 2m m n= − , that is / 2n m= .
An experiment is designed to analyze CPLEX solution time and the results are

summarized in Table 5. The dependent variable is the solution time required by
CPLEX to solve the problem and the independent variables used are m (length of
the long vector), ratio (the ratio of the short to the long vector, that is, n/m), the

Maximizing correlation in the presence of missing data 2663

variance of the data elements and cross terms. The results confirm that the vector
size and the ratio of the number of elements in the short vector to the number of
elements in the long vector are the important factors. Variance is not significant.

Table 5. Results of the factor analysis on the 90 test problems.

R2 = 0.99; F = 582.18; p<.0001

Parameter p - Value
Intercept 0.9879

M <.0001
Ratio <.0001

Variance 0.9076
M*Ratio <.0001

M*Variance 0.9827
 Ratio*Variance 0.0213

M*Ratio*Variance 0.0049

5. Conclusion

We provided two approaches to solving the problem of maximizing

correlation between two streams of data measured over time, when one of the
streams of data has missing values. We developed an integer programming model
of the problem and used CPLEX with its probing option. We also developed a
genetic algorithm and compared its performance to the integer programming
approach on ninety test problems. The IP approach worked well, that is, provides
the provably optimal solution in a reasonable amount of time for most problems.
The most difficult problems to solve are those for which the percentage of
missing data points approaches one half. The genetic algorithm is much faster
than IP and although it cannot guarantee optimality, provided near optimal
solutions for the test bank of ninety problems used in this study.

References

[1] Lisiecki, L.E., Lisiecki, P.A., Application of dynamic programming to the correlation

of paleoclimate records, Paleoceanography 2002 17 (4).

[2] Holland, J. H., Adaptation in Natural and Artificial Systems, University of Michigan

Press, Ann Arbor, 1975.

2664 Xinfang (Jocelyn) Wang

[3] Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley, Reading, MA, 1989.

[4] Pirlot, M., General local search methods, European Journal of Operational
Research 1996 92 (3), 493-511.

Received: March 26, 2008

	Maximizing Correlation in the Presence of Missing Data
	Recommended Citation

	Microsoft Word - wang

