Concept Mapping as a Meaningful Learning Tool to Promote Conceptual Understanding and Clinical Reasoning for Resident and Distance Learning Students

Gregory G. Passmore
Georgia Regents University, gpassmor@gru.edu

Follow this and additional works at: http://digitalcommons.georgiasouthern.edu/sotlcommons

Part of the Curriculum and Instruction Commons, Educational Assessment, Evaluation, and Research Commons, Educational Methods Commons, Higher Education Commons, and the Social and Philosophical Foundations of Education Commons

Recommended Citation
Passmore, Gregory G., "Concept Mapping as a Meaningful Learning Tool to Promote Conceptual Understanding and Clinical Reasoning for Resident and Distance Learning Students" (2014). SoTL Commons Conference. 73.
http://digitalcommons.georgiasouthern.edu/sotlcommons/SoTL/2014/73

This presentation (open access) is brought to you for free and open access by the Programs and Conferences at Digital Commons@Georgia Southern. It has been accepted for inclusion in SoTL Commons Conference by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Concept Mapping as a Meaningful Learning Tool to Promote Conceptual Understanding and Clinical Reasoning for Resident and Distance Learning Students

Gregory Passmore, Ph.D., CNMT
Professor
Department of Medical Laboratory, Imaging, and Radiologic Sciences
Georgia Regents University
Augusta, Georgia
gpassmor@gru.edu
WORKSHOP ACTIVITIES

• Introduction
• Exploration
 – How to make and use C maps
• Explanation
 – Learning Theory, Research, and C maps
• Application
 – Practice making and using C maps
INTRODUCTION: CONCEPT MAPPING

Introduction: Student Radiation Protection Concept Maps

Map with relationships and interconnectivity

- **Characteristic**: Intensity of radiation falls off with square of distance
- **Inverse square law**
- Use tongs when handling isotopes
- Less exposure time = less radiation exposure
- Radiation protection

Map as “flow diagram”: no relationships

- Radiation protection
 - **Time**
 - Increase time Decrease activity
 - **Distance**
 - Increase distance Decrease activity
 - **Shielding**
 - Reduce exposure
 - Increase thickness Decrease activity
 - Syringe shields Lead plates
INTRODUCTION: CONCEPT MAP WITH REMEDIATION COMMENTS/CORRECTIONS

Radiation Protection

Leads to

Reduced Exposures

3 Simple Steps

Time

Distance

Shielding

As time gets longer, activity of radioactive material reduces

Def

Half life

Inverse Square Law
radiation intensity at a distance is equal to the inverse square of the distance

Def

I1 D1 = I2 D2
I1 D1 2 = I2 D2 2

Hinders exposure
More shielding
Less exposure

Attenuation

Scatter

Absorption

measured as

Half value layer
or Thickness

measured as
EXPLORATION: CONCEPT MAPPING

HOW DO YOU MAKE CONCEPT MAPS?

• Simplest Unit is a Concept Dumbbell
 – two concepts and their relationships in the form of two nodes and the link between them

INTENSIVE STUDYING Leads to GOOD GRADES

Gregory Passmore
EXPLORATION: CONCEPT MAPPING

HOW DO YOU MAKE SIMPLE CONCEPT MAPS?

- Linking Relationships

<table>
<thead>
<tr>
<th>DESCRIPTIVE</th>
<th>DYNAMIC</th>
<th>ELABORATIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type (T)</td>
<td>Leads to (L)</td>
<td>Example (EX)</td>
</tr>
<tr>
<td>Part (P)</td>
<td>Next (N)</td>
<td>Analogy (A)</td>
</tr>
<tr>
<td>Characteristic (C)</td>
<td>Influences (I)</td>
<td>Comment (CO)</td>
</tr>
</tbody>
</table>

(Dansereau & Cross, Knowledge Mapping. 1990)
EXPLORATION: CONCEPT MAPPING

HOW DO YOU MAKE CONCEPT MAPS?

• Novak (1984) : Ausubel/Hierarchical
 – Deductive
 – Good grasp of knowledge domain
 – Top to Bottom Approach most Efficient
 • Most Inclusive or General Concepts at Top
 • Narrow and Specific Concepts Underneath
 • Important to Identify Linking Relationships

EXPLORATION: Focus Question Mapping

Concept List Parking Lot with Focus Question

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Universe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecules</td>
<td>Mass</td>
</tr>
<tr>
<td>Matter</td>
<td>Energy</td>
</tr>
<tr>
<td>Light</td>
<td>Heat</td>
</tr>
<tr>
<td>Chemical</td>
<td>Stored</td>
</tr>
<tr>
<td>Electrical</td>
<td>Elements</td>
</tr>
<tr>
<td>Nuclear</td>
<td>Space</td>
</tr>
<tr>
<td>Transformations</td>
<td>State of Matter</td>
</tr>
<tr>
<td>Motion</td>
<td>Gases</td>
</tr>
<tr>
<td>Kinetic energy</td>
<td>Liquids</td>
</tr>
<tr>
<td>Potential energy</td>
<td>Solids</td>
</tr>
</tbody>
</table>

Focus question: What is the structure of the Universe?

- Atoms
- Molecules
- Heat
- Light
- Chemical
- Electrical
- Nuclear
- Transformations
- Motion
- Kinetic energy
- Potential energy
- Elements
- Space
- State of Matter
- Gases
- Liquids
- Solids

Focus question: What is the structure of the Universe?

The Universe
- contains
- transformed where E=mc^2
- is
- has
- may be
- used to make things
- can be
- comes in

Matter
- is
- has
- may be
- used to make things
- can be
- comes in

Usually Conserved
- Energy
- Mass
- Organized
- Stored

Different Forms

EXPLORATION: RELATIONSHIP-GUIDED SEARCH - RGS

• Start with a central concept and ask the following:
 – Can this concept be broken down into different types?
 – What are the characteristics of each type?
 – What are the important parts of each type?
 – What led to the starting concept? Or where does it lead to?
 – What influences the starting concept? Or what does it influence?
 – What happens next? Can I elaborate with an analogy or example?

(Dansereau & Cross, Knowledge Mapping. 1990)
EXPLORATION: RELATIONSHIP-GUIDED SEARCH - RGS
EXPLORATION:
Fill in the blank concept and/or linking relationship
EXPLORATION: Fill in the blank concept and/or linking relationship.
EXPLORATION: Fill in the blank concept and/or linking relationship
EXPLORATION: Fill in the blank concept and/or linking relationship.
EXPLORATION: Fill in the blank concept and/or linking relationship
EXPLORATION: Fill in the blank concept and/or linking relationship

Diagram:

- INSECT → ANT
- FLU → FEVER
- EYE → CAMERA
- CAR → Tire
- PARTY!!! → POOR GRADES
- EAT MAIN COURSE → blank
EXPLORATION: Fill in the blank concept and/or linking relationship

Diagram:

- INSECT → T → ANT
- FLU → C → FEVER
- EYE → An → CAMERA
- CAR → P → Tire
- PARTY!!! → L → POOR GRADES
- EAT MAIN COURSE → N → DESSERT
EXPLORATION: Fill in the blank concept and/or linking relationship
EXPLORATION: Fill in the blank concept and/or linking relationship
EXPLORATION: Fill in the blank concept and/or linking relationship
EXPLORATION: Fill in the blank concept and/or linking relationship.
EXPLORATION: Fill in the blank concept and/or linking relationship
EXPLORATION: Fill in the blank concept and/or linking relationship.
EXPLORATION: Fill in the blank concept and/or linking relationship
EXPLORATION: Fill in the blank concept and/or linking relationship
EXPLORATION: Fill in the blank concept and/or linking relationship
EXPLORATION: Fill in the blank concept and/or linking relationship
EXPLORATION: Fill in the blank concept and/or linking relationship
EXPLORATION: Fill in the blank concept and/or linking relationship

Diagram:
- **HOSPITAL**
- **TRAUMA CENTER**
 - **EMERGENCY ROOM**
 - **OPERATING ROOMS**
 - **T**
 - **C**
- **WORK IN HOSPITALS**
- **FLORENCE NIGHTINGALE**
EXPLORATION: Fill in the blank concept and/or linking relationship
EXPLORATION: Fill in the blank concept and/or linking relationship
EXPLORATION: Construct a Concept Map from the statements provided.

- RAPTORIAL BIRDS INCLUDE EAGLES AND CONDORS, A TYPE OF AMERICAN VULTURE

- FRONTAL DISPLAYS AND LATERAL ATTACKS ARE TWO KINDS OF AGGRESSIVE BEHAVIOR IN THE PARADISE FISH
EXPLORATION: Construct a Concept Map from the statements provided.

<table>
<thead>
<tr>
<th>RAPTORIAL BIRDS INCLUDE EAGLES AND CONDORS, A TYPE OF AMERICAN VULTURE</th>
<th>RAPTORIAL BIRDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONTAL DISPLAYS AND LATERAL ATTACKS ARE TWO KINDS OF AGGRESSIVE BEHAVIOR IN THE PARADISE FISH</td>
<td></td>
</tr>
</tbody>
</table>
EXPLORATION: Construct a Concept Map from the statements provided.

RAPTORIAL BIRDS INCLUDE EAGLES AND CONDORS, A TYPE OF AMERICAN VULTURE

FRONTAL DISPLAYS AND LATERAL ATTACKS ARE TWO KINDS OF AGGRESSIVE BEHAVIOR IN THE PARADISE FISH
EXPLORATION: Construct a Concept Map from the statements provided.

- RAPTORIAL BIRDS INCLUDE EAGLES AND CONDORS, A TYPE OF AMERICAN VULTURE

- FRONTAL DISPLAYS AND LATERAL ATTACKS ARE TWO KINDS OF AGGRESSIVE BEHAVIOR IN THE PARADISE FISH
EXPLORATION: Construct a Concept Map from the statements provided.

RAPTORIAL BIRDS INCLUDE EAGLES AND CONDORS, A TYPE OF AMERICAN VULTURE

FRONTAL DISPLAYS AND LATERAL ATTACKS ARE TWO KINDS OF AGGRESSIVE BEHAVIOR IN THE PARADISE FISH
EXPLORATION: Construct a Concept Map from the statements provided.

RAPTORIAL BIRDS INCLUDE EAGLES AND CONDORS, A TYPE OF AMERICAN VULTURE

FRONTAL DISPLAYS AND LATERAL ATTACKS ARE TWO KINDS OF AGGRESSIVE BEHAVIOR IN THE PARADISE FISH

RAPTORIAL BIRDS

- EAGLE
- AMERICAN VULTURE

- CONDOR
 - T or Ex

PARADISE FISH
EXPLORATION: Construct a Concept Map from the statements provided.

Raptors include eagles and condors, a type of American vulture.

Frontal displays and lateral attacks are two kinds of aggressive behavior in the paradise fish.

Paradise fish

C

Aggressive behavior
EXPLORATION: Construct a Concept Map from the statements provided.

Raptors include eagles and condors, a type of American vulture.

Frontal displays and lateral attacks are two kinds of aggressive behavior in the paradise fish.
EXPLORATION: Construct a Concept Map from the statements provided.

Raptorial birds include eagles and condors, a type of American vulture.

Frontal displays and lateral attacks are two kinds of aggressive behavior in the paradise fish.

Paradise fish

Frontal display lateral attack

Eagle

American vulture

Condor

Kind

T

C

T or Ex

Aggressive behavior

T

KIND
<table>
<thead>
<tr>
<th>CONGRESS IS COMPOSED OF THE SENATE AND THE HOUSE OF REPRESENTATIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPERIMENTS WITH TWO DISEASES OF THE POX STRAIN, COW POX AND SMALL POX, RESULTED IN THE PRINCIPLE OF VACCINATION</td>
</tr>
<tr>
<td>CONGRESS IS COMPOSED OF THE SENATE AND THE HOUSE OF REPRESENTATIVES</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>EXPERIMENTS WITH TWO DISEASES OF THE POX STRAIN, COW POX AND SMALL POX, RESULTED IN THE PRINCIPLE OF VACCINATION</td>
</tr>
</tbody>
</table>
EXPLORATION: Construct a Concept Map from the statements provided.

CONGRESS IS COMPOSED OF THE SENATE AND THE HOUSE OF REPRESENTATIVES

CONGRESS

P

SENATE

P

HOUSE OF REPRESENTATIVES

EXPERIMENTS WITH TWO DISEASES OF THE POX STRAIN, COW POX AND SMALL POX, RESULTED IN THE PRINCIPLE OF VACCINATION
EXPLORATION: Construct a Concept Map from the statements provided.

CONGRESS IS COMPOSED OF THE SENATE AND THE HOUSE OF REPRESENTATIVES

EXPERIMENTS WITH TWO DISEASES OF THE POX STRAIN, COW POX AND SMALL POX, RESULTED IN THE PRINCIPLE OF VACCINATION

PRINCIPLE OF VACCINATION
EXPLORATION: Construct a Concept Map from the statements provided.

CONGRESS IS COMPOSED OF THE SENATE AND THE HOUSE OF REPRESENTATIVES

CONGRESS

P
SENATE

P
HOUSE OF REPRESENTATIVES

EXPERIMENTS WITH TWO DISEASES OF THE POX STRAIN, COW POX AND SMALL POX, RESULTED IN THE PRINCIPLE OF VACCINATION

PRINCIPLE OF VACCINATION

from

EXPERIMENTS
EXPLORATION: Construct a Concept Map from the statements provided.

- **CONGRESS IS COMPOSED OF THE SENATE AND THE HOUSE OF REPRESENTATIVES**

- **EXPERIMENTS WITH TWO DISEASES OF THE POX STRAIN, COW POX AND SMALL POX, RESULTED IN THE PRINCIPLE OF VACCINATION**

 - **PRINCIPLE OF VACCINATION**
 - from
 - EXPERIMENTS
 - with
 - 2 POX
EXPLORATION: Construct a Concept Map from the statements provided.

CONGRESS IS COMPOSED OF THE SENATE AND THE HOUSE OF REPRESENTATIVES

EXPERIMENTS WITH TWO DISEASES OF THE POX STRAIN, COW POX AND SMALL POX, RESULTED IN THE PRINCIPLE OF VACCINATION

PRINCIPLE OF VACCINATION

- from
- with

2 POX

- COW
- SMALL
EXPLORATION: Construct a Concept Map from the statements provided.

CONGRESS IS COMPOSED OF THE SENATE AND THE HOUSE OF REPRESENTATIVES

EXPERIMENTS WITH TWO DISEASES OF THE POX STRAIN, COW POX AND SMALL POX, RESULTED IN THE PRINCIPLE OF VACCINATION
EXPLORATION: CONCEPT MAPPING - RGS

• YOUR TURN:
• Using the RGS questions and linking relationships listed in your handout, develop a simple concept map for the concept of COMMON COLD.
What are some types of colds?
What are some characteristics?
What leads to a cold?
What happens next?
EXPLORATION: RGS – COMMON COLD

What are some types of colds?

- Common Cold
 - Head
 - Chest

What are characteristics of a cold or types?

- Fever w/Flu
 - comment
 - NOT Fever
 - characteristic
 - Head
 - Chest
 - characteristic
 - Congestion
 - Cough
EXPLORATION: RGS – COMMON COLD

What leads to a cold?

Fever w/Flu
 ↓
 comment
 ↓
NOT Fever
 ↓
characteristic
 ↓
Common Cold

 ↑
 type
 ↓
 type
 ↓
Head
 ↓
characteristic
 ↓
Congestion
 ↓
Cough

What happens next with a cold?

Exposure to Cold Virus
 ↓
 comment
 ↓
NOT Fever
 ↓
characteristic
 ↓
Common Cold

 ↓
 type
 ↓
Head
 ↓
characteristic
 ↓
Congestion
 ↓
Cough

 ↑
 type
 ↓
 type
 ↓
Chest
 ↓
characteristic
 ↓
Recovery
 ↓
Bronchitis Pneumonia Sinusitis
 ↓
next
next
next
next
Cough
EXPLANATION: LEARNING & TEACHING

LEARNING THEORY

ACTIVE LEARNING
- Based on beliefs
- Knowledge is built from experiences
- Learning is a structuring process
- Teacher facilitates student learning
- Student - active participant

CONSTRUCTIVIST PHILOSOPHY
- Knowledge from objective measurements & discovery
- Learn the inherent structure of the discipline
- Teacher conveys structure to student
- Student - passive recipient

OBJECTIVIST PHILOSOPHY
- Learn the inherent structure of the discipline
- Teacher conveys structure to student
- Student - passive recipient

COGNITIVE LEARNING THEORY
- Assimilation
- Accommodation
- Equilibrium
- Integration
- Differentiation
- Metacognitive Activity
- AUSUBEL
- Assimilation
- Accommodation
- Arbitrary
- Rote Memorization
- Teacher elicits behaviors
- Behavior indicates learning
- Concept maps & Vee Diagrams
- Conceptual, Relational, Hierarchical
- Conceptual, Relational, Hierarchical
- Misconceptions
- Non-arbitrary assimilation

MEANINGFUL LEARNING PRINCIPLES
- Knowledge is stored in idiosyncratic cognitive structures
- Prior knowledge influences new learning
- Knowledge is constructed through meaningful learning
- Knowledge can be elicited

TEACHING STRATEGIES
- Teaching should help student make connections
- Teacher facilitates student learning
- Teaching elicits behaviors
- Teaching elicits behaviors
- Teacher facilitates student learning
- Teacher facilitates student learning
Meaningful learning ↔ Rote learning continuum

MEANINGFUL LEARNING PRINCIPLES

Knowledge is constructed meaningfully through non-arbitrary assimilation

Knowledge is stored in conceptual, relational, & hierarchical structures

Knowledge can be elicited through maps and diagrams

TEACHING STRATEGIES

Help Student Organize Knowledge Structure Similar to Discipline Knowledge Structure

Elicit Student Knowledge Structure

Misconception Identification & Remediation

FACILITATION

Ascertain what the student knows and teach accordingly

Identify the problem

Define the variables

Explore solutions

Apply solutions

Look for alternatives

EXTERNALIZE & MODIFY

EXPOSITORY L/L (with application)

CONCEPTUAL CHANGE

PROBLEM SOLVING (IDEAL)

SHARE (Maps/Diagrams)

APPLY (Problem solving)

FOCUS (Analogy)

CHALLENGE (Discrepent Event)

IP

Computer processor and storage as model for learning

WM = Computer Processor

LTM = Computer Storage

PCK

Information processed and retrieved in chunks of 5-7 units

Help Student Organize Knowledge Structure

Ausubel

Based on which are

Uses with characteristic purpose

EXPLANATION: LEARNING & TEACHING
Explanation: Concept Mapping

- **Concept Maps**
 - known as Graphic Organizer
 - 2-Dimensional Space
 - drawn in
 - made of
 - represent

- **Organized Knowledge**
 - used to form
 - needed for
 - Effective Teaching
 - Meaningful Learning

- **Concepts**
 - connected using
 - made of
 - are

- **Linking Words**
 - used to form
 - can be

- **Relational Propositions**
 - different from
 - as
 - may be

- **Hierarchically Structured**
 - interrelationships
 - constructed in

- **Cognitively Structured**
 - experts
 - needed to see

- **Procedurally Structured**
 - enable
 - especially with

- **Relationally Structured**
 - needed to see
 - creativity

- **Labeled**
 - with

- **Descriptive**
 - as

- **Elaborative**
 - may be

- **Dynamic**
 - example

- **Perceived Regularities or Patterns**
 - in

- **Events or Happenings**
 - with

- **Objects or Things**
 - with

- **Symbols**
 - with

- **Words**
 - with

- **Crosslinks**
 - show
 - between

- **Units of Meaning**
 - show

- **Topic Outlines**
 - show

- **Other Organizer Techniques**
 - show
Explanation: Research Objective

• Advances and complexities in the field of Nuclear Medicine require that NMT students move away from dependency on memorization and learn with a meaningful understanding of the discipline's principles.

• Metacognitive learning strategies are based on instructional learning theory which promote deep, meaningful learning.

• Test both resident and distance learning NMT students to determine if students perform better when traditional instruction is supplemented with the non-traditional metacognitive learning strategy commonly known as concept mapping.
EXPLANATION: CONCEPT MAPPING
EMPIRICAL EVIDENCE - STUDENT COMPARISONS

- Quasi-experimental 2 group design O X O: O _ O
- First study: 2 resident student groups separated by time but equalized on SAT scores
- Second study: 2 distance learning student groups separated by time but equalized on admissions scores
- Concept map used as metacognitive learning strategy
- Additional course content included the standard homework problem assignment, laboratory, and opportunity for question-answer sessions;
- Laboratory on Interactions of radiation, detection, stats and NM QC
- Concept mapping group used maps as the template for misconception identification and remediation interactions between the instructor and the student.
- The control groups relied on homework problems and question-answer sessions alone.
- The course final examination was used to facilitate a quantitative comparison between the performance of concept mapping students and non-mapping students.
EXPLANATION: CONCEPT MAPPING EMPIRICAL EVIDENCE - RESIDENT STUDENT COMPARISONS

Note: results of applying Concept Map intervention to Radiation Physics w/Laboratory Course. Significant performance gains noted. Some interaction.

Course performance as a function of SAT scores and Mapping intervention

<table>
<thead>
<tr>
<th>CONTROL</th>
<th>CONCEPT-MAP LEARNING INTERVENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW SAT</td>
<td>MODERATE SAT</td>
</tr>
<tr>
<td>73.4</td>
<td>88.3</td>
</tr>
<tr>
<td>91.3</td>
<td></td>
</tr>
</tbody>
</table>

ANCova $F=5.123; p=0.0340; N=24$
EXPLANATION: CONCEPT MAPPING
EMPIRICAL EVIDENCE – DISTANCE STUDENT COMPARISONS

Note: comparison between mapping and non-mapping groups in Radiation Physics And Protection Course w/Laboratory

*Mann Whitney U Test:
Z = -2.0381, p = 0.0415, n = 25
Meaningful Learning from Concept Mapping

- Concept mapping
- Lectures
- Most textbook presentations

Combined with

Meaningful Learning

Examples

- Scientific research
- New music or architecture
- Most routine research or intellectual production

Most school laboratory work

Applied to

Rote Learning

- Multiplication tables
- Applying formulas to solve problems
- Trial and error puzzle solutions

Reception instruction

Guided discovery instruction

Autonomous discovery instruction

Novak & Canas, 2006
EXPLANATION: MEANINGFUL LEARNING FROM LABORATORY

From the Theory/Continua: A student who learns by….

– Rote Learning + Reception Instruction
 • Memorize clinical protocol
 • Unable to work with new protocol/change/modification/variation

– Meaningful Learning + Guided Discovery (Problems w limits)
 • Know protocol and Understand protocol
 • Able to work with new protocol/change/modification/variation

– Meaningful Learning + Autonomous Discovery (Problems w/o limits)
 • Understand protocol
 • Creates new protocol for each application
 • Process not suitable for clinical education/application
EXPLANATION: LEARNING AND LABORATORY

- Students need to be helped to recognize
 - What concepts they already know that relate to the observed events or objects
 - What events or objects they are observing
 - What records are worth making
- Bridge the gap: the “doing” or procedural part of the laboratory needs to be related to the conceptual or “thinking” part of the laboratory for meaningful learning to come from a laboratory activity
- “Knowledge is not discovered like gold or oil, but rather is constructed like cars or pyramids”
 - Novak & Gowin (1984)
EXPLANATION: CONCEPT MAPPING
LEARNING AND ASSESSMENT TOOL

• Used as a comprehension/misconception check
• Can be assessed using a scoring rubric according to accuracy, depth, and degree of integration or synthesis of knowledge
 – 1 point each valid relationship
 – 5 points each valid level of hierarchy
 – 10 points each valid and significant cross link between different segments in the map as evidence of synthesis of knowledge

Novak & Gowin, *Learning How to Learn*. 1984
EXPLANATION: LEARNING, ASSESSMENT, AND REMEDIATION

APPLICATION: CONCEPT MAP

YOUR TURN!

• Construct a concept map from the paragraphs on memory that follow
THE INFORMATION PROCESSING MODEL OF MEMORY

• Information processing begins with the stimulus from the external environment. If we do not pay attention to the new information coming in, it’s forgotten; if we do pay attention to it, it moves to the short-term memory (STM) storage system. Short term memory is conscious/working memory - all that we are aware of at one time. The capacity of this store is limited to about 7 +/- 2 chunks of information. Information in STM can be bumped out by new information (forgotten).

• Information in STM, if rehearsed or encoded, remains the focus of attention and is passed along to the long-term memory (LTM). Information that is encoded without attention to prior knowledge is roteley learned. Information that is encoded with attention to prior knowledge is meaningfully learned. This is accomplished via concept assimilation: integration or differentiation.

• The capacity of LTM is probably unlimited. The information stored in LTM is rarely forgotten, although we may have difficulty in retrieving it because of the way we search for it.
HOW DO WE REMEMBER ACCORDING TO THE INFORMATION PROCESSING MODEL OF MEMORY?

- Information processing
- stimulus
- attention
- forgotten
- short-term memory (STM) conscious/working memory
- STM capacity limited
- 7 +/- 2 chunks
- bumped out (forgotten).

- rehearsed
- encoded
- focus of attention
- long-term memory (LTM)
- prior knowledge
- meaningful learning
- Assimilation
- Concept integration
- Concept differentiation
- rote learning.
- LTM capacity unlimited
- rarely forgotten
- difficulty retrieving
FOCUS QUESTION: How do we remember according to the IPM of memory?
HOW DO WE REMEMBER ACCORDING TO THE INFORMATION PROCESSING MODEL OF MEMORY?

- Information processing
- stimulus
- attention
- forgotten
- short-term memory (STM) conscious/working memory
- STM capacity limited
- 7 +/- 2 chunks
- bumped out (forgotten).

- rehearsed
- encoded
- focus of attention
- long-term memory (LTM)
- prior knowledge
- meaningful learning
- Assimilation
- Concept integration
- Concept differentiation
- rote learning.
- LTM capacity unlimited
- rarely forgotten
- difficulty retrieving
CONCEPT MAP
for the FOCUS
QUESTION:
How do we remember
according to the
Information
Processing
Model of Memory
Chunking Rule?
APPLICATION: IPM MEMORY LEARNING TASKS

• What follows is an application/test of the IPM of memory, specifically “chunking”. Your map on memory will serve as the conceptual understanding for what you will experience next.
• To participate, you will need a clean area in which to write.
• You will be exposed to items to memorize for 30 seconds, you will then have 30 seconds to write them down.
• You will then be able to review how many items you could put in STM and score yourself
• A show of hands will tell us if chunking is being used
• Ready… Set… Go!
<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Vee and Memory Learning Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>13</td>
<td>26</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>
EVALUATION: VEE AND MEMORY LEARNING TASKS

How many did you remember?

Write them down now!
EVALUATION: VEE AND MEMORY LEARNING TASKS

8 18
13 26
21 3
5 12
11 7
Ready, Set, Go
EVALUATION: VEE AND MEMORY LEARNING TASKS

C E
Q P
V Y
M T
A O
How many did you remember?

Write them down now!
EVALUATION: VEE AND MEMORY LEARNING TASKS

C E
Q P
V Y
M T
A O
Ready, Set, Go
EVALUATION: VEE AND MEMORY LEARNING TASKS

pet turtle
dog animal
cat house
mouse door
rabbit toy
EVALUATION: VEE AND MEMORY LEARNING TASKS

How many did you remember?

Write them down now!
EVALUATION: VEE AND MEMORY LEARNING TASKS

pet turtle

dog animal

cat house

mouse door

rabbit toy
Ready, Set, Go
EVALUATION: VEE AND MEMORY LEARNING TASKS

petunia sunflower

gardenia maple

marigold sycamore

zinnia cottonwood

goldenrod walnut
EVALUATION: VEE AND MEMORY LEARNING TASKS

How many did you remember?

Write them down now!
EVALUATION: VEE AND MEMORY LEARNING TASKS

petunia sunflower

gardenia maple

marigold sycamore

zinnia cottonwood

goldenrod walnut
Ready, Set, Go
EVALUATION: VEE AND MEMORY LEARNING TASKS

tracheid palisade
xylem mesophyll
 cambium stomate
 phloem aperature
 epidermis plastid
How many did you remember?

Write them down now!
CONCLUSIONS/DISCUSSION

- Concept maps allow the teacher to
 - Expose/change learner’s knowledge structure
 - Identify and remediate misconceptions
 - Help student move from rote learner to meaningful learner
 - Help student move from algorithm memorization to problem solving
- The quantitative analyses support the use of concept mapping as a metacognitive learning strategy suitable for use by both resident and distance learning students in the Nuclear Medicine Technology program.
- Meaningful learners are more adept problem solvers/critical thinkers and should be more adaptive technologists.
In Closing…Questions?