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Due to the popularity of social networks and human-carried/human-affiliated devices with sensing abilities, like smartphones and
smart wearable devices, a novel applicationwas necessitated recently to organize group activities by learning historical data gathered
from smart devices and choosing invitees carefully based on their personal interests. We proposed a private and efficient social
activity invitation framework. Our main contributions are (1) defining a novel friendship to reduce the communication/update
cost within the social network and enhance the privacy guarantee at the same time; (2) designing a strong privacy-preserving
algorithm for graph publication, which addresses an open concern proposed recently; (3) presenting an efficient invitee-selection
algorithm, which outperforms the existing ones. Our simulation results show that the proposed framework has good performance.
In our framework, the server is assumed to be untrustworthy but can nonetheless help users organize group activities intelligently
and efficiently. Moreover, the new definition of the friendship allows the social network to be described by a directed graph. To
the best of our knowledge, it is the first work to publish a directed graph in a differentially private manner with an untrustworthy
server.

1. Introduction

Nowadays, social networks are pervading our lives in nearly
every possible form and corner [1–7], as people use them
to connect, interact, and share with their peers. In par-
ticular, the ubiquity of smart phones and various social
network applications have made the global social network
flourish over recent years. One common and critical service
provided by social networks is organizing group activities.
Unfortunately, most social networks offer only rudimentary
invitation mechanisms, which send invitations either one-
by-one manually or to everyone automatically. Besides, most
group activities are filled strictly with a first-come, first-
served manner. These services are ill-suited for frequent,
small ad hoc events such as outdoor activities: inviting every
possible candidate increases the likelihood of a group where
few people know anybody else except for the host; however,
it is tedious to manually search for a well-acquainted social
group that performs the same kinds of exercise, at the same

time and place [8]. From the invitees’ perspective, they might
be overwhelmed by a plethora of different activity invitations
that they are not willing to attend since invitations are
typically sent out without considering the real interest, ability,
and social habit of each invitee.

The popularity of human-carried/human-affiliated
devices with sensing abilities, like smartphones and
smart wearable devices, has opened up a large resource
for sensory data, which has necessitated many novel
sophisticated applications. For example, smart watches are
usually equipped with an array of different sensors such as
compasses, proximity sensors, accelerometers, gyroscopes,
altimeters, barometers, and GPS [9]. These can be used
to collect various data such as location, route, distance,
pace/speed, duration, and elevation changes for different
activities attended by the owner. By analyzing these personal
data with state-of-the-art mining or learning algorithms,
the habits of the device owners, including their preferred
activities, schedule, and location, can be easily derived. This
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habit information can, in turn, be used to help the owners
find group activities appropriate for them.

Based on this observation, Ai et al. [10] first proposed an
efficient and personalized group activity organizing frame-
work by learning historical data gathered from smart devices
and choosing invitees carefully for an activity. However, they
did not consider the risk of the privacy leakage of participants’
sensitive information, such as habits, age, and gender. Later,
Tong et al. [8] designed a private group activity organizing
framework and proposed the adoption of differential privacy
to secure participants’ personal information. Tong et al. [8]
considered a practical scenario,where three parties, including
an untrustworthy activity organizer app, current app users,
and potential users, are involved. After registering on this app,
users can either organize activities by submitting a request to
the server or receive invitations from the app server. Users
have the capability of adding each other as friends. In order to
receivemore interesting invitations, app users need to divulge
personal information such as age, gender, locational pref-
erences, and historical data from their wearable devices. In
particular, Tong et al. [8] assumed that the activity organizer
app is untrustworthy, mainly due to the reason that the app
developers are motivated by advertising revenue therefore
attempting to attract more users by releasing some useful
information about current users. The main contribution of
Tong et al.’s work [8] is to protect existing users’ privacy while
satisfying all three parties involved. The primary drawback,
however, is that it allows the entire social network to be
released to the public after naive sanitization approaches like
removing user IDs.Thismay leave users open to privacy risks,
especially reidentification attacks [11, 12].

In our work, based on the same three-party scenario
assumption by Tong et al. [8], we designed a new group activ-
ity organizing framework with a stronger privacy guarantee
and a more efficient invitee-selection algorithm. More pre-
cisely, our contributions in this research can be summarized
as follows.

(1) A novel definition of friendship: we introduced a more
flexible definition of the friendship between a pair
of users, which asks user “Who do you like doing
activities with?” instead of “Who is your friend?”
In previous works [8, 10], the friendship is defined
mutual. However, a person could enjoy doing activ-
ities with another person without having the other
person reciprocate the same feeling.This makes sense
for the event invitation framework since its purpose
is not to keep track of actual mutual friendships, but
which users enjoy doing activitieswithwhom.Amore
accurate term for this relationshipwould be “preferred
friend” or “directed friend.”
Such “directed” friendship notion brings several ben-
efits. First of all, such friendships can be described
easily by a directed graph 𝐺 = (𝑉, 𝐴), where the
vertex set 𝑉 represents the user set and the arc set 𝐴
shows the corresponding directed friendships. That
is, if V likes doing activities with 𝑢, then (V, 𝑢) ∈ 𝐴.
Second, there is no need for other users to accept a
friendship request, meaning two users do not have to

directly communicate or have mutual agreement on
friendship.This relieves the workload of updating the
social network. Last but not least, since friendships
are not bidirectional, having one user’s report does
not compromise information about the remaining
users. In other words, such friendships enhance the
privacy protection for the users.

(2) Stronger privacy guarantee: we added an efficient
algorithm to make the graph satisfy a strong privacy
guarantee, differential privacy, and thus allow the
app server to release the underlying graph of the
entire social network without jeopardizing users’
privacy. Differential privacy requires no compu-
tational/informational assumptions about attackers,
data type-agnosticity, composability, and so on [13].
Since the app server is untrustworthy, we need to
hide structure information before it is uploaded to
the server. We applied the Randomized Response
Technique (RRT) [14] to all vertices (or users). That
is, each user’s friendships will be perturbed before
being reported to the server. For example, a user
will report the true (fake, resp.) relationship with a
probability 1 − 𝑝 (𝑝, resp.), where the parameter 𝑝 ∈
(0, 1] is usually a small number. Such a randomized
response strategy ensures the existence of connection
from one user to the other to be hidden in the output
graph while keeping the low distortion of the graph
and preserving the most useful information about
the graph. To the best of our knowledge, this is
the pioneer work that this technique is applied in a
directed graph under the existence of an untrusted
server.

(3) A more efficient invitation sending mechanism: in
order to select appropriate candidates as invitees,
Ai et al. [10] proposed a greedy algorithm, k-core,
based on the k-core (undirected) graph theory. Our
work designed a novel greedy algorithm, named as
advanced k-core (Adv-k-core), to improve the k-
core algorithm.Thek-core algorithm starts with the
original graph, sets 𝑘 = 1, and then iteratively deletes
all vertices with a degree less than 𝑘 in the current
graph. 𝑘 gradually increases and the algorithm termi-
nates when the size of the remaining graph reaches a
lower bound. Our Adv-k-core deletes vertices more
carefully by assigning higher priority to the vertex
with the least impact on other vertices.

(4) Experimental validation: in order to evaluate the
performance of our activity invitation framework,
we simulated an outdoor activity invitation system,
where at most 1,000 users are created with different
profiles, including age, gender, free time schedules,
activity types, activity levels, and locational ranges.
Then, at most 5,000 different activity events are
generated, each of which requires a specific age range,
time range, activity type, activity level, and location.
Our experiments show that the privacy-preserving
algorithm protects the structure of the social network
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effectively and the Adv-k-core algorithm improves
the original k-core algorithm extensively.

The rest of the paper is organized as follows. Section 2
reviews related works; the proposed framework is introduced
in Section 3; Section 4 shows the simulation results; and
Section 5 concludes our paper.

2. Related Work

Organizing group activities via social media, such as Face-
book, Twitter, Plancast, Meetup, Yahoo! Upcoming, and
Eventbrite, are quite popular in the era of “Internet of
Everything.” However, most of these social media offer only
rudimentary functions for organizing group activities [8].
Take Facebook as an example; it allows users to create public
or private events, but the organizer can only choose to send
invitations one-by-one or to everyone.

There is plenty of research in the literature on social
networks; the following two are the ones most related to our
work. Ai et al. [10] first made the proposal to design the
social event invitation framework based on historical data
of smart devices. They also presented two greedy invitation-
disseminating algorithms. Their framework, however, is
impractical as it assumes the existence of a trusted and
altruistic server. Besides, few privacy protection approaches
were applied to guarantee the security or confidentiality
of users’ personal information. Recently, Tong et al. [8]
considered a more realistic scenario in which the server is
selfish and possibly untrustworthy. They concentrated more
on the privacy issue such that existing userswill be sufficiently
protected while satisfying all involved parties simultaneously.
Nevertheless, Tong et al. [8] only protected personal data such
as age, gender, free time schedules, activity types, activity
levels, and locational ranges, while leaving the underlying
graph structure of the entire social network open to privacy
risks, especially reidentification attacks [11, 12].

Differential privacy [14–18] is a strictly provable and
security-controlled privacy model to provide a very strong
privacy guarantee. It can quantify the extent to which indi-
viduals’ privacy in a data set is preserved, while maintaining
the usefulness of the data set. Differential privacy has proven
to be extremely successful since its inception. The most
popular differential privacy mechanisms include the Laplace
mechanism [14], exponential mechanism [19], geometric
mechanism [20], and Gaussian mechanism [17, 21].

The problem of graph publication under differential
privacy has been well investigated. Generally speaking, there
are two main techniques: direct publication and model-
based publication. By direct publication, the output graph is
constructed by directly adding noise to each edge or vertex,
followed by a postprocessing step (probably a rounding
step). For example, given an undirected graph and assuming
edges are independent, adding Laplace noise to each cell of
the adjacency matrix and then rounding each cell to 1’s or
0’s is a trivial Laplace mechanism to preserve the privacy.
However, such an approach may severely deteriorate the
graph structure. Recently, there are two differential privacy
algorithms, TmF [22] and EdgeFlip [23], in this category

for undirected graph publication. The algorithms for model-
based publication inject noise to some intermediary quanti-
ties or structures, such as graph spectral, instead of directly to
the original graph.The output graph will be regenerated from
these noisy intermediary structures. Popular algorithms in
this category include 1K-series, 2K-series [24, 25], Kronecker
graph model [13], graph spectral analysis [26], DER [27],
HRG-MCMC [28], and ERGM [29]. Most existing privacy-
preserving algorithms for graph publication assume the
graph is undirected and published by a trusted and altruistic
server.

3. Privacy-Enhanced Activity
Invitation Framework

In this section, we introduce our novel privacy-enhanced
activity invitation framework (refer to Figure 1). Following
Tong et al.’s [8] design, our framework also involves three
parties: a central server controlled by the app developers, the
existing app users, and potential new members. Compared
with Tong et al.’s [8] framework, our framework enhances
the users’ privacy by defining a “directed” friendship and
protecting the underlying graph structure of the social net-
work under the differential privacy model. Furthermore, our
framework employs a novel and significantly more effective
invitation-disseminating algorithm.

As introduced, we make a realistic assumption that the
server is untrustworthy, given that it is motivated by advertis-
ing to its existing users and gaining profits. In order to bolster
its income, the server will strive to provide quality services to
maintain currentmembers and also try to entice new users by
releasing some statistical information about current users and
providing online querying services. As a result, existing users
or new registers may have trouble deciding whether to report
their personal information honestly, including age, gender,
and “Who I like doing activities with.” On the one hand,
the server will definitely learn users’ habits more accurately if
users could provide candid information, which in turn leads
to better services. On the other hand, users should be worried
by the possibility of having their personal information leaked.

The following shows how our design works in detail.
Once a person registers on the app, the server will create
and maintain a profile for him/her until he/she wants to
destroy the account. If the user is a smart wearable device
owner, the front-end app will seek authorization to access
his/her historical data which contains records pertaining to
activities. Otherwise, users need to fill their own profiles
manually based on their understanding and estimation of
their abilities. Whenever a user needs to update or report
his/her personal information to the server, the front-end,
user-side app will automatically obfuscate the given personal
information before being transferred to the server so that
the information is protected by differential privacy. If a user
wants to organize an activity, a request will be first sent to
the server. Then the server will analyze users’ historical data
and estimate the users’ abilities or levels for each type of
activity; the routine times they are free; and a locational range,
indicating the rough area in which he/she is willing or able
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Existing users Untrustworthy app server Potential new users

Report noised data including
friendship information

Submit organization request

Activity invitation via A 

Query

Reply

Release sanitized graph information

dv-k-core

Figure 1: Our privacy-enhanced activity invitation framework.

to travel in order to participate in the activity. Based on the
above estimated habits about existing users, the server will
disseminate the invitations to appropriate candidates via the
Adv-k-core algorithm such that all of the invitees meet the
group activity requirements and have a high chance to attend
the activities. Since any privacy-preserving algorithm that
satisfies differential privacy will protect the individual’s infor-
mation regardless of the adversary’s background information
[13], the server can release the statistical information about
the current users safely to the public.

Our framework does not need to keep track of actual
mutual friendships, but which users enjoy doing activities
with whom. To depict such relationship among the users, we
first define the concept of directed friendship and then use a
directed graph to simulate the entire social network.

Definition 1 (directed friendship). For any two users A and B,
if A likes attending activities together with B, one says B is A’s
directed friend.

While the traditional friendship is a symmetric relation,
our definition implies an asymmetric relation between users.
Let 𝐺 = (𝑉,𝐴) represent the underlying directed graph,
where a vertex V ∈ 𝑉 denotes a user. An arc from V to 𝑢
means that user V likes attending activities together with 𝑢.
Such a definition allows each user to update his/her neighbors
independently, which not only reduces workload but also
enhances the privacy guarantee for the users.

3.1. Graph Publication via Differential Privacy

3.1.1. Preliminary. Differential privacy [14, 16, 17] is a pri-
vacy model that offers strong privacy guarantees under the
assumption of a powerful adversary. In particular, the adver-
sary could have nearly unlimited background knowledge.The
model works by injecting artificial noise to the disclosed data
set such that no one can tell whether an entry in the data
set has been changed or not. On the other hand, differential
privacy guarantees the released information is still useful.
Formally, given two datasets where only one entry is altered,
the probability distribution of the outputs for a statistical
analysis of one data set should be nearly identical to the
distribution of the other’s.

Let x ∈ X𝑛 and x󸀠 ∈ X𝑛 be two data sets. The distance
between the two datasets, denoted as 𝑑(x, x󸀠), is the minimum
number of sample changes that are required to change x into
x󸀠. If 𝑑(x, x󸀠) = 1, that is, if x and x󸀠 differ by atmost one entry,
then we say that x and x󸀠 are neighbors.

Definition 2 (edge-neighboring graphs). One says two
directed graphs 𝐺1 = (𝑉1, 𝐴1) and 𝐺2 = (𝑉2, 𝐴2) are
edge-neighboring graphs if 𝑉1 = 𝑉2, 𝐴1 ⊂ 𝐴2, |𝐴2| = |𝐴1| + 1.

Definition 3 (vertex-neighboring graphs). One says two
directed graphs 𝐺1 = (𝑉1, 𝐴1) and 𝐺2 = (𝑉2, 𝐴2) are vertex-
neighboring graphs if 𝑉1 = 𝑉2 − {V}, 𝐴1 ⊂ 𝐴2, 𝐴2\𝐴1 ⊂ 𝑁(V).
Here𝑁(V) denotes the set of incident incoming and outgoing
arcs on V.

A query 𝑓 is a function whose domain is the collection
of data sets. The output of the query 𝑓 is usually denoted as
𝑓(x). The global sensitivity Δ𝑓 of the given query 𝑓 is defined
as

Δ𝑓 = max
𝑑(x,x󸀠)=1

󵄩󵄩󵄩󵄩󵄩𝑓 (x) − 𝑓 (x󸀠)󵄩󵄩󵄩󵄩󵄩 , (1)

where ‖ ⋅ ‖ is a norm function. Our proposed framework is
trying to hide the true friendship information for each user
against queries like “how many neighbors does a user have?”
It is not difficult to check that the sensitivity is 1 under the
edge-neighboring notion and at most 𝑛 − 1 in the worst case
under the vertex-neighboring notion. We adopt the edge-
neighboring notion in our work for the sake of low sensitivity.

Definition 4 (𝜖-differential privacy [14, 30]). Amechanism or
randomized function M : X𝑛 → R provides 𝜖-differential
privacy if and only if for all pairs of neighboring data sets x
and x󸀠, and all subset 𝑆 ⊂ Range(M), it holds that

Pr [M (x) ∈ 𝑆] ≤ 𝑒𝜖 Pr [M (x󸀠) ∈ 𝑆] . (2)

The parameter 𝜖, deemed privacy budget, controls the
level of privacy. Usually, the value of 𝜖 is small; say 𝜖 ∈ (0, 1].
Intuitively speaking, the parameter 𝜖 gives the upper bound
on the output difference when the mechanism is applied to
a data set and any one of its neighbors. From inequality
(2), Pr[M(x) ∈ 𝑆] and Pr[M(x󸀠) ∈ 𝑆] become closer
when 𝜖 decreases, implying more effort to distinguish the
neighboring data sets and therefore indicating a stronger
privacy guarantee.
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The Laplacian mechanism [17] and exponential mecha-
nism [19] are two of the most popular 𝜖-differentially private
mechanisms. Generally speaking, the Laplace mechanism is
typically used when the output is numerical, whereas the
exponential mechanism is applied to nonnumerical outputs.
In particular, the exponential mechanism is more suited for
situations where we need to select the “optimal” response but
adding noise directly to𝑓(x) can completely destroy its value.

Definition 5 (Laplacian mechanism [17]). Given a query 𝑓 :
X𝑛 → R𝑘, the Laplacian mechanism is defined as

M𝐿 (x) = 𝑓 (x) + (𝑌1, . . . , 𝑌𝑘) , (3)

where 𝑌𝑖 are i.i.d. (independent and identically distributed)
random variables drawn from Lap(Δ𝑓/𝜖). Here, Lap(𝑏)
denotes a Laplace distribution (centered at 0) with scale
𝑏 and its probability density function is Lap(𝑥 | 𝑏) =
(1/2𝑏) exp (−|𝑥|/𝑏).

Definition 6 (exponential mechanism [19]). The exponential
mechanismM𝐸 selects and outputs an element 𝑟 ∈ Range(𝑓)
with probability proportional to exp (𝜖𝑢(x, 𝑟)/2Δ𝑢), where

𝑢 : X𝑛 × Range (𝑓) 󳨀→ R (4)

is a utility function that maps data set/output pairs to utility
scores, and the sensitivity of 𝑢 is defined as

Δ𝑢 = max
𝑟∈Range(𝑓)

max
𝑑(x,x󸀠)=1

󵄩󵄩󵄩󵄩󵄩𝑢 (x, 𝑟) − 𝑢 (x󸀠, 𝑟)󵄩󵄩󵄩󵄩󵄩 . (5)

3.1.2. Our Differential Privacy Mechanism. There are two
main types of noise injection strategies: output perturbation
and input perturbation. Namely, the 𝜖-differentially private
mechanisms are usually designed by either perturbing the
output of the query or adding noise to the input data set.
Obviously, the output perturbation requires a trusted server
to hold the authentic data sets while the input perturbation
is more flexible as the data can be perturbed before being
transferred to the server. Our framework assumes an untrust-
worthy server, and therefore an input perturbation strategy
will be adopted.

Both the Laplacian and exponential mechanisms men-
tioned in Section 3.1.1 can be modified to perturb the input
rather than output. These two mechanisms can be applied
to obfuscate different types of users’ raw data, such as
age, activity types, or activity ranges [8]. Since our work
concentrates on the protection of users’ friendships, we
add a novel privacy-preserving mechanism, named as Pert,
in the random response manner (refer to Algorithm 1).
More precisely, each user reports his/her real friendship
information with a probability 1 − 𝑝, where 𝑝 ∈ (0, 1]. The
larger 𝑝 is, the more arcs in the graph are randomized.

Theorem 7. Our graph perturbation algorithm Pert guaran-
tees 𝜖-differential privacy.

Proof. Suppose 𝐺1 = (𝑉, 𝐴1) and 𝐺2 = (𝑉, 𝐴2) are two
edge-neighboring graphs. Assume 𝐴2 = 𝐴1 ∪ {(V, 𝑢)}. Let

𝐺󸀠1 and 𝐺󸀠2 represent the perturbed version of 𝐺1 and 𝐺2,
respectively. Note that 𝑉 represents the same set of users
in both graphs. The probability that two edge-neighboring
graphs are perturbed to the same graph is determined by
the value assigned to the differing arc (V, 𝑢). According to
the algorithm Pert, an arc in the input graph maintains its
original value with a probability 1 − 𝑝 and flips its value with
a probability𝑝. For any𝐺󸀠, depending onwhether (V, 𝑢) ∈ 𝐺󸀠,
we have

Pr {𝐺󸀠1 = 𝐺󸀠}
Pr {𝐺󸀠2 = 𝐺󸀠}

=

{{{{{{{{
{{{{{{{{
{

Pr {𝐺󸀠1 = 𝐺󸀠 | (V, 𝑢) ∈ 𝐺󸀠}
Pr {𝐺󸀠2 = 𝐺󸀠 | (V, 𝑢) ∈ 𝐺󸀠} , (V, 𝑢) ∈ 𝐺󸀠

Pr {𝐺󸀠1 = 𝐺󸀠 | (V, 𝑢) ∉ 𝐺󸀠}
Pr {𝐺󸀠2 = 𝐺󸀠 | (V, 𝑢) ∉ 𝐺󸀠} , (V, 𝑢) ∉ 𝐺󸀠

=

{{{{{{
{{{{{{
{

𝑝
1 − 𝑝, (V, 𝑢) ∈ 𝐺󸀠

1 − 𝑝
𝑝 , (V, 𝑢) ∉ 𝐺󸀠

≤ 𝑒𝜖,

(6)

where the last inequality is due to the value of 𝑝 = 𝑒𝜖/(1 +
𝑒𝜖). This proves the theorem according to the definition of 𝜖-
differential privacy.

Theorem 8 (composition theorem [30]). Let M𝑖, 𝑖 ∈
{1, 2, . . . , 𝑛}, be 𝜖𝑖-differentially private algorithms. Suppose

M[𝑛] (x) = (M1 (x) ,M2 (x) , . . . ,M𝑛 (x)) (7)

is the combination of these 𝑛 algorithms.

(i) If allM𝑖 are defined on the same data set, thenM[𝑛] is
(∑𝑛𝑖=1 𝜖𝑖)-differentially private.

(ii) If allM𝑖 are defined on different data sets, thenM[𝑛] is
(max{𝜖𝑖})-differentially private.

According to the Composition Theorem, combining
several differentially private algorithms results in a new
differentially private algorithm at a cost of linearly increasing
privacy budget in the worst case. For each user, his/her profile
can be described by a tuple, where each dimension represents
one type of data. Injecting noises to different data field with
different 𝜖𝑖-differentially private algorithms M1, . . . ,M𝑛,
(max{𝜖𝑖})-differential privacy will be guaranteed if data fields
are independent; otherwise, (∑𝑛𝑖=1 𝜖𝑖)-differential privacy will
be guaranteed.

3.2. Improved 𝑘-Core Algorithm. The server’s main job is to
select invitees to meet the request of organizing a group
activity from some user. Following Ai et al. [10] and Tong
et al. [8], we assume that having friends attend an activity
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Input: A directed graph 𝐺 = (𝑉,𝐴) and 𝑝 = 𝑒𝜀/(1 + 𝑒𝜀)
Output: A perturbed graph 𝐺󸀠 = (𝑉,𝐴󸀠)

(1) Let 𝐴󸀠 = 0
(2) for each V ∈ 𝑉 do
(3) if (V, 𝑢) ∈ 𝐴 then
(4) Add (V, 𝑢) to 𝐴󸀠 with probability 1 − 𝑝
(5) else
(6) Add (V, 𝑢) to 𝐴󸀠 with probability 𝑝
(7) return the resultant graph 𝐺󸀠 = (𝑉,𝐴󸀠)

Algorithm 1: Graph perturbation algorithm Pert.

Input: A directed 𝑘-core graph𝐻 and a group size𝑚
Output: A list 𝐿 of invitees

(1) Let 𝐿 = 𝑉(𝐻)
(2) Let 𝑘 = 1
(3) while |𝐿| > 𝑚 do
(4) if V ∈ 𝑉(𝐻) such that |𝑁+(V)| ≤ 𝑘 then
(5) Pick the V such that after its deletion
(6) resulting in miminum number of vertices
(7) with degree ≤ 𝑘
(8) Delete V
(9) else
(10) 𝑘 = 𝑘 + 1
(11) return the remaining list 𝐿

Algorithm 2: Improved 𝑘-core algorithm Adv-k-core.

will improve participants’ overall experience. Therefore, the
server needs to ensure that a number of friends will also be
invited for each invitee.

We adopt the concept of 𝑘-core graph to simulate a
qualified social networkwhere each user has at least 𝑘 friends.
Suppose 𝐻 is a subgraph of 𝐺 such that users in 𝐻 satisfy all
the requirements for an activity. Let 𝑉(𝐻) and 𝐴(𝐻) denote
the vertex and arc set of𝐻, respectively. We say𝐻 is a 𝑘-core
graph if each vertex V ∈ 𝑉(𝐻) has at least 𝑘 directed friends.
Let 𝑁+𝐻(V) = {𝑢 | ∃(V, 𝑢) ∈ 𝐴(𝐻)} be the set of neighbors
of V in graph 𝐻, and let |𝑁+𝐻(V)| denote its cardinality, or
the degree of V in 𝐻. Suppose a group activity has a limited
capacity𝑚, and 𝑟 is the statistical response rate for similar past
activities. The task then becomes choosing 𝑚 + 𝑚/𝑟 invitees
such that each person also has 𝑘 friends invited.

Ai et al. [10] presented a greedy invitee-selection algo-
rithm, k-core.The k-core algorithm starts with the original
graph and sets 𝑘 = 1; and then it iteratively deletes all vertices
with a degree less than 𝑘 in the current graph. When deleting
the vertices, the highest priority will be assigned to the vertex
with the minimum degree. As 𝑘 gradually increases, the
algorithm terminates when the size of the remaining graph
is (𝑚 + 𝑚/𝑟). We propose an improved k-core algorithm,
denoted as Adv-k-core (refer to Algorithm 2). Adv-k-core
works very similar to k-core with the exception of the vertex
deletion step. We scan through the whole graph and find the
vertex with the least impact on other vertices, in respect to

the number of vertices with degree less than current 𝑘 by the
deletion.

4. Experiments

Two experiments were designed to evaluate the performance
of our activity invitation framework. In these experiments,
an outdoor activity invitation system is simulated, where at
most 1000 users are created with different profiles, including
friendships, age, gender, free time schedules, activity types,
activity levels, and locational ranges. Then, at most 5,000
different activity events are generated, each of which requires
a specific age range, time range, activity type, activity level,
and location. As previouslymentioned, each participantmust
satisfy all of the event’s requirements. A random response
rate 𝑟 ∈ [0.6, 1) is generated uniformly for each user in
advance.When a user receives an invitation, another random
number re ∈ [0, 1) is generated. If re < 𝑟, he/she accepts
the invitation; otherwise, there will be no response. All
experiments were implemented with Java and conducted
under OS X EL Capitan with processor, 3.5 GHz Intel Core
i5, and memory, 16GB 1600MHz DDR3.

4.1. Experiment 1. As shown in Section 3.1, users’ sensitive
information has been theoretically secured by our differential
privacy algorithms. In particular, the graph structure of the
social network can be protected by the algorithm Pert. Since
the algorithm Pert hides users’ friendship by perturbing
the arcs, the graph structure can be changed, which might
affect users’ usage experience. For example, suppose a user
originally has 5 friends in the social network and the number
may decrease to 0 after the Pert algorithm is applied, which
excludes this user from the invitee pool.

Our first experiment is to investigate whether existing
users will receive worse services if they report noisy friend-
ships to the server. We define the utility for each existing user
as the ratio of accepted invitations in the original graph to
the number of accepted invitations in the perturbed graph.
Denote this ratio by 𝛾. That is,

𝛾 = ♯ of accepted invitations in 𝐺
♯ of accepted invitations in 𝐺󸀠 . (8)

The quantity 𝛾0 = |𝛾 − 1| tending to 0 indicates that our
framework could still provide qualified servers to existing
users despite users reporting noisy information to the server.
For simplicity, we still name 𝛾0 as the utility.

In this experiment, we set privacy budget 𝜖 ∈ {0.05 :
0.05 : 1}, where the notation {ℓ : Δ : 𝑢} denotes an arithmetic
sequence of numbers with lower bound ℓ, upper bound 𝑢,
and constant difference Δ between the consecutive terms.
For example, {1 : 2 : 10} = {1, 3, 5, 7, 9}. To figure out
how the utility 𝛾0 behaves as the privacy budget varies, the
average utility 𝛾0 was calculated for each privacy budget 𝜖.
Additionally, we tested 4 scenarios aiming at investigating the
scalability of the algorithm Pert. More precisely, we revoked
the Pert algorithm to inject noises to the outdoor activity
invitation systems with the following settings:

(i) 200 users and 1000 invitations;
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Figure 2: Average utility 𝛾0 for existing users under Pert and Adv-k-core. Here, the outdoor activity invitation system involves 200 users.
(a, b) show the average utility 𝛾0 after 1000 and 5000 activities created, respectively.
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Figure 3: Average utility 𝛾0 for existing users under Pert and Adv-k-core. Here, the outdoor activity invitation system involves 500 users.
(a, b) show the average utility 𝛾0 after 1000 and 5000 activities created, respectively.

(ii) 200 users and 5000 invitations;
(iii) 500 users and 1000 invitations;
(iv) 500 users and 5000 invitations.
To calculate the average utility 𝛾0, our Adv-k-core

algorithm was used to select invitees. The results for the
size-200 and size-500 outdoor activity invitation systems are
shown in Figures 2 and 3, respectively.

Figures 2 and 3 show the average utility 𝛾0 is relatively
small, that is, 𝛾0 ≤ 0.02, in most cases. This demonstrates the
service quality for existing users is not jeopardized severely
even if they report noisy friendships to the server. Besides,
the experiment results show the excellent scalability of our
Pert algorithm.As the privacy budget 𝜖 increases, the privacy
guarantee becomes weaker according to the definition of
differential privacy, resulting in better services received by the
existing users. Consequently, 𝛾0 should decrease towards 0
along the 𝜖 axis, which is verified by Figures 2 and 3. Actually,
when 𝜖 = 0.35, our Pert algorithm has already achieved a
satisfying utility.

4.2. Experiment 2. Our second experiment is to study the
efficiency of our invitation-selection algorithmAdv-k-core.
Suppose 𝑘1 and 𝑎1 are the value of 𝑘 and the number
of remaining arcs after the algorithm k-core terminates.

Similarly, let 𝑘2 and 𝑎2 be the value of 𝑘 and the number of
remaining arcs after the algorithm Adv-k-core stops. Then
define two measures

𝛼 = 𝑘1
𝑘2

,

𝛽 = 𝑎1
𝑎2

.
(9)

The smaller values of 𝛼 and 𝛽 mean more average neighbors
in the resulting graph after the application of Adv-k-core,
compared with the one obtained by the employment of k-
core. Therefore, they further indicate a closer related invitee
pool, which implies invitees have higher chance to accept the
invitation.

To study how the values of 𝛼 and 𝛽 change as the graph
size changes, we applied both algorithmsAdv-k-core and k-
core in graphs withmultiple sizes. For each size, a number of
graphs of the same size were generated and then the average
values of 𝛼 and 𝛽 were obtained over these graphs, which
was designed to show how stable our algorithm Adv-k-core
could improve the algorithm k-core. In our experiment
setting, let the set of graph sizes be {100 : 100 : 1000} and we
calculated the average values of 𝛼 and 𝛽 over𝑁 graphs, where
𝑁 ∈ {50, 100, 200, 500}. The results are shown in Figure 4.
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Figure 4: A description of how values of𝛼 and𝛽 change as the graph size changes. (a, b, c, d) were obtained by 50, 100, 200, and 500 repetitions,
respectively.

From Figure 4, we can observe that 𝑘2 ≥ 𝑘1 and
𝑎2 ≥ 𝑎1 almost hold for all graph sizes in the experiment,
which implies our algorithm Adv-k-core indeed produces
a closer related invitee pool. Moreover, we find 𝛽 is always
smaller than 𝛼. This indicates the original k-core algorithm
generates a less “consistent” adjacency in the sense that both
high degree users and low degree users can be selected,
which in turn results in a smaller 𝑘 value. In other words,
in the resultant graph after the application of our Adv-k-
core algorithm, the variance of the numbers of neighbors
is relatively smaller. Besides, we can claim that our Adv-k-
core algorithm improves the k-core algorithm steadily as
the values of 𝛼 and 𝛽 are quite stable when the graph size
increases.

5. Conclusion

This paper follows the recent works by Ai et al. [10] and
Tong et al. [8]. We presented a private and efficient social
activity invitation framework where the server is assumed
to be untrustworthy but can nonetheless help users organize
group activities intelligently and efficiently. Our main con-
tributions are (1) a novel definition of friendship to reduce
the communication/update cost among the network while

simultaneously enhancing data security and user confidence;
(2) a strong privacy-preserving algorithm for graph pub-
lication, which addresses the concern proposed by Tong
et al. [8]; (3) an efficient invitee-selection algorithm. Our
simulation results show that our proposed framework has
good performance. In our current research, we assumed each
data field is independentwith each other and queries from the
adversary are also independent. In the future, wewill consider
more complicated queries and the correlation among data
fields.
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