2009

Synthesis of 3,6-Bis(5’-bromo-3’-indolyl)-1,4-dimethypiperazine-2,5-dione

Stephen Crooke
Georgia Southern University

C. Michele Davis McGibony
Georgia Southern University, mdavis@georgiasouthern.edu

Christine R. Whitlock
Georgia Southern University, cwhitlock@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/chem-facpubs

Part of the Chemistry Commons

Recommended Citation
https://digitalcommons.georgiasouthern.edu/chem-facpubs/37

This article is brought to you for free and open access by the Chemistry and Biochemistry, Department of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Short Note

3,6-Bis(5’-bromo-3’-indolyl)-1,4-dimethylpiperazine-2,5-dione

Stephen Crooke, Michele Davis-McGibony and Christine Whitlock *

Department of Chemistry, Georgia Southern University, Statesboro, GA 30460, USA; E-Mails: sc01859@georgiasouthern.edu (S.C.); mdavis@georgiasouthern.edu (M.D.M.)

* Author to whom correspondence should be addressed; E-Mail: cwhitlock@georgiasouthern.edu.

Received: 22 September 2009 / Accepted: 7 October 2009 / Published: 9 October 2009

Abstract: The one-pot synthesis of 3,6-bis(5’-bromo-3’-indolyl)-1,4-dimethylpiperazine-2,5-dione is reported. Sarcosine anhydride is brominated and immediately reacted with 5-bromoindole to produce the product, which is characterized by 1H NMR, MS and microanalysis.

Keywords: 3,6-bis(5’-bromo-3’-indolyl)-1,4-dimethylpiperazine-2,5-dione; indole; bromination; dragmacidin

1. Introduction

Isolated from the marine sponge series Dragmacidin, Hexadella, and Spongosorites, unique bis-indolylpiperazine alkaloids have received significant attention in recent years for their antiviral, cytotoxic, and anti-inflammatory properties [1–10]. The dragmacidin series of alkaloids each contain a central piperazine ring with indole units attached at the 2- and 5- positions. The corresponding author successfully synthesized the first member of the dragmacidin series [11] and recently reported an improved procedure for preparing 1,4-dimethylpiperazine-2,5-dione, an important precursor [12]. We now report the synthesis of 3,6-bis(5’-bromo-3’-indolyl)-1,4-dimethylpiperazine-2,5-dione (3), a novel bis-indolylpiperazinedione utilizing the newly-developed procedure. This product will be utilized in the preparation of novel dragmacidin derivatives.

2. Results and Discussion

The synthesis of 3 is shown in Scheme 1. Bromine is directly added to 1 with heat and the illumination of a sun lamp. After one hour, the solution is cooled to provide the dibrominated product.
as an unstable precipitate. This precipitate is then reacted with 5-bromoindole in DMF to produce 3. In conclusion, an important precursor to a dragmacidin derivative has been prepared by efficient means.

\[
\begin{align*}
\text{O} & \quad \text{Br}_2, \text{hv} \\
\text{Me} & \quad \text{Me} \\
\text{N} & \quad \text{O} \\
\text{N} & \quad \text{O} \\
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me}
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{Br}_2, \text{hv} \\
\text{Me} & \quad \text{Me} \\
\text{N} & \quad \text{O} \\
\text{N} & \quad \text{O} \\
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me}
\end{align*}
\]

\[
\begin{align*}
\text{O} & \quad \text{Br}_2, \text{hv} \\
\text{Me} & \quad \text{Me} \\
\text{N} & \quad \text{O} \\
\text{N} & \quad \text{O} \\
\text{Me} & \quad \text{Me} \\
\text{Me} & \quad \text{Me}
\end{align*}
\]

3. Experimental Section

To a solution of sarcosine anhydride (1) (1.50 g, 10.6 mmol) in o-dichlorobenzene (15 mL), at 150°C, was added dropwise Br₂ (2.5 mL, 96.6 mmol), under illumination of a sun lamp. The solution was heated for 1 h and then cooled to room temperature. The solution was decanted leaving beige crystals (2). To a solution of 5-bromoindole (2.21 g, 11.3 mmol) in DMF (20 mL) was slowly added 2 (1.50 g, 5.0 mmol), while the reaction temperature was maintained at room temperature with a water bath. The reaction mixture was stirred for 18 h, concentrated and diluted with methanol. The resulting solid was filtered to yield the product (3) as a white crystalline solid (1.92 g; 72.5%): mp > 250°C.

\(^1\text{H NMR (d}_6\text{-DMSO)}: 2.67 (s, 3H), 5.64 (s, 1H), 7.25 (dd, 1H, \text{J} = 1.9, 8.6), 7.39 (d, 1H, \text{J} = 8.7), 7.49 (d, 1H, \text{J} = 2.5), 7.69 (d, 1H, \text{J} = 1.8), 9.67 (bs, 1H); \text{MS:} 532 (m^+, 17.3), 530 (54.5), 528 (51.3), 335 (100.0), 333 (99.9), 307 (31.9), 305 (30.7), 239 (47.9), 237 (91.8), 235 (68.0), 209 (30.6), 207 (30.9), 197 (30.2), 195 (29.7); \text{Anal. Calcd. For } \text{C}_{22}\text{H}_{16}\text{Br}_2\text{N}_4\text{O}_2: C, 48.84; \text{H, 3.42; N, 10.57. Found: C, 49.80; H, 3.50; N, 10.64.}

Sarcosine anhydride (99.5%) was obtained from Acros Organics, and 5-bromoindole (99%) was obtained from Sigma-Aldrich, Inc.

Acknowledgements

This work was supported by the Allen E. Paulson College of Science and Technology Scholars Program and the Department of Chemistry at Georgia Southern University, and the Cava research group at The University of Alabama.

References and Notes

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).