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Abstract

An extremal result about vertex covers, attributed by Hajnal [4] to Erdős and Gallai
[2], is applied to prove the following: If n, k, and t are integers satisfying n ≥ k ≥ t ≥ 3
and k ≤ 2t − 2, and G is a graph with the minimum number of edges among graphs
on n vertices with the property that every induced subgraph on k vertices contains a
complete subgraph on t vertices, then every component of G is complete.

Keywords and phrases: vertex cover, independent set, matching, (n, k, t) problem,
Erdős-Stone Theorem, Turán’s Theorem, Turán graph

1 Introduction

All graphs here will be finite, non-null, and simple. A vertex cover of a graph G is a set
S ⊂ V (G) that contains at least one endpoint of every edge in G. The vertex cover number
of G is the minimum size of a vertex cover of G, and is denoted by β(G). This parameter is
monotone – that is, β(H) ≤ β(G) for all subgraphs H of G. Deleting a vertex or an edge of
G causes the vertex cover number to go down by at most 1. An edge or vertex of G whose
removal causes such a decrease is said to be β-critical (or vertex-cover critical) for G. The
graph G itself is said to be β-critical or vertex-cover critical if β(H) < β(G) for every proper
subgraph H of G. It is easy to see that G is β-critical if and only if G has no isolated vertices
and every edge of G is β-critical for G. In particular, this means that if β(G) > 0, then G
has a vertex-cover critical subgraph H with β(H) = β(G).

S ⊂ V (G) is a vertex cover if and only if V (G) \S is independent: from this it is easy to
see that, if α(G) is the vertex independence number of G, the size of a largest independent
(mutually non-adjacent) set of vertices, then α(G)+β(G) = |V (G)|. Therefore, a graph G is
β-critical if and only if G has no isolated vertices and, for each e ∈ E(G), α(G−e) = α(G)+1.
With this in mind, it is easy to verify that the following are β-critical; (i) Kn for n ≥ 2; (ii)
odd cycles; and (iii) matchings.

In conformity with the notation by which G+H denotes the disjoint union of G and H,
a matching with s edges will be denoted sK2 = K2 + · · ·+K2. Clearly β(sK2) = s.

If G is bipartite, the Kőnig-Egerváry Theorem ([1], [6]) says that β(G) is the maximum
number of edges in a matching in G. Therefore, a non-empty bipartite graph is vertex-cover
critical if and only if it is a matching.

The extremal result of Erdős and Gallai [2] referred to in the title of this paper concerns
the function f defined for s = 1, 2, . . . as

f(s) = max{|V (G)| : G is β-critical and β(G) = s}.

The result is that f(s) = 2s. We have not been able to obtain a copy of [2]; we found an
attribution to [2] of this result in [4], where Hajnal provides a short proof, suggesting that
the proof in [2], a 23-page paper, is not very short. Later in [4], Hajnal, apparently without
realizing it, provides an even shorter proof that supplies a stronger conclusion: not only is
it true that f(s) = 2s, but, also, sK2 is the only β-critical graph on 2s vertices with vertex
cover number s. We will give this proof here, in a form that the reader will not find in [4].
Hajnal there is driving toward a dual form of the result, based on the fact that S is a vertex
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cover of G if and only if V (G) \ S induces a complete graph in G, the complement of G.
Here is our translation of his second proof. The word “cover” will mean vertex cover. If
S ⊂ V (G), NG(S) = {u ∈ V (G) : uv ∈ E(G) for some v ∈ S}.

Lemma 1.1 Suppose that G is β-critical and I ⊂ V (G) is an independent set of vertices.
Then |I| ≤ |NG(I)|.

Proof The proof will be by induction on |I|. Since G has no isolated vertices, the conclusion
holds when |I| = 1.

Suppose |I| > 1, and suppose that |I| ≥ |NG(I)|+1. We will deduce a contradiction. Let
v ∈ I and I ′ = I \ {v}. By the induction hypothesis, |NG(I)| ≤ |I| − 1 = |I ′| ≤ |NG(I ′)| ≤
|NG(I)|. Therefore, |I ′| = |NG(I ′)| = |NG(I)|, so NG(I ′) = NG(I). Now let H be the induced
subgraph of G with vertex set V (H) = I ′ ∪ NG(I). Also by induction, for every J ⊂ I ′,
|J | ≤ |NG(J)|. Therefore, by Hall’s Theorem, H has a perfect matching M .

Since v is not an isolated vertex, vw ∈ E(G) for some w ∈ NG(I). Since G is β-critical,
G− vw has a cover C of size β(G)− 1. Let C ′ = C \ (I ∪NG(I)) and C ′′ = C ∩ (I ∪NG(I)).
Since all edges of G − vw having both ends in I ∪ NG(I) must be covered by C ′′, C ′′ must
cover M , so |C ′′| ≥ |M | = |NG(I)|. Thus |C ′ ∪ NG(I)| = |C ′| + |NG(I)| ≤ |C ′| + |C ′′| =
|C ′ ∪ C ′′| = |C| = β(G)− 1.

But C ′ covers all edges of G with neither end in I ∪NG(I), and NG(I) covers each edge
of G with at least one end in I ∪NG(I), because I is independent, so C ′ ∪NG(I) is a cover
of G. Therefore, |C ′ ∪NG(I)| ≤ β(G)− 1 is a contradiction. �

Theorem 1.2 If G is vertex-cover critical then |V (G)| ≤ 2β(G), with equality if and only
if G is isomorphic to β(G)K2.

Proof Let S be a minimum cover of G; |S| = β(G). Let I = V (G) \ S, an independent set;
since S is a cover, NG(I) = S. By Lemma 1.1, |I| ≤ |S|, so |V (G) = |I|+|S| ≤ 2|S| = 2β(G).
If |V (G)| = 2β(G), then |I| = |S|. By Lemma 1.1, |J | ≤ |NG(J)| for all J ⊂ I. Therefore,
by Hall’s Theorem, there is a perfect matching M in G; M is isomorphic to β(G)K2. Since
β(M) = β(G) and G is β-critical, it must be that M = G. �

2 Application to the (n, k, t) Problem

Suppose n ≥ k ≥ t are positive integers. An (n, k, t)-graph is a graph on n vertices such
that every induced subgraph of order k contains a clique of order t. The (n, k, t) problem is
to determine, for each triple (n, k, t), all the minimum (n, k, t)-graphs – that is, the (n, k, t)-
graphs with the fewest edges. When t = 1 the only such graph is the graph with n isolated
vertices, and when t = 2, the problem can be seen as a complementary version of Turán’s
Theorem [7]; hence the unique minimum (n, k, 2)-graphs are T n,k−1, where Tn,r denotes the
Turán graph on n vertices with r parts. Other easy cases include k = t ≥ 2 and n = k,
where the unique extremal graphs are Kn and (n− t)K1 +Kt, respectively [5].

The (n, k, t) conjecture is that whenever n ≥ k ≥ t, some minimum (n, k, t)-graph has
complete components. The strong (n, k, t) conjecture is that every minimum (n, k, t)-graph
has complete components. If the strong (n, k, t) conjecture holds then the (n, k, t) problem is
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essentially solved in [5] – the extremal graphs are all aK1+T n−a,b for particular non-negative
integers a,b – although there is room for improvement in the determination of a and b given
in [5].

Theorem 2.1 (Erdős and Stone [3]) Suppose F is a family of graphs containing no empty
graph, and let

g(n) = max{|E(G)| : |V (G)| = n and no member of F is a subgraph of G}.

Let χ(F) = min{χ(H) : H ∈ F}, and suppose that χ(F) > 2. Let r = χ(F)− 1. Then

|E(Tn,r)|
g(n)

→ 1 as n→∞.

Explanation: The name F was chosen to connote forbidden subgraphs. Clearly no graph
with chromatic number r = χ(F)− 1 can contain a subgraph from F , and clearly the Turán
graph Tn,r is the graph on n vertices of that chromatic number with the most edges, if n ≥ r.
Therefore, |E(Tn,r)| ≤ g(n), for n ≥ r. The Erdős-Stone Theorem asserts that if F contains
no bipartite graph, then, asymptotically, |E(Tn,r)| ∼ g(n).

In the original Erdős-Stone Theorem, F was a singleton; but the more general theorem
follows easily from the original, by the following argument. Given F , let H ⊂ F be such
that χ(H) = χ(F) > 2, and set F ′ = {H}. Let g′ be defined with reference to F ′ as g
was defined with reference to F . Clearly, g′(n) ≥ g(n) for all n, so, for n ≥ r = χ(F) − 1,

1 ≥ |E(Tn,r)|
g(n)

≥ |E(Tn,r)|
g′(n)

→ 1 as n→∞.

To apply the Erdős-Stone Theorem to the (n, k, t) problem, we define an (n, k, t)-graph
to be the complement of an (n, k, t)-graph. In other words, an (n, k, t)-graph is a simple
graph on n vertices such that every subgraph H of order k has vertex independence number
α(H) ≥ t. (Notice the absence of the word “induced” in this description.) Clearly the
(n, k, t) problem is equivalent to the problem of describing the (n, k, t)-graphs with the most
edges.

Fix k > t > 2. For n ≥ k, an (n, k, t)-graph is a graph on n vertices with no subgraph

from F = {H : |V (H)| = k and α(H) ≤ t − 1}. Since χ(H) ≥ |V (H)|
α(H)

for any graph

H, χ(F) ≥ d k
t−1e. On the other hand, there exists a complete multipartite graph H with

d k
t−1e ≥ 2 parts on k vertices with maximum part size t−1. ClearlyH ∈ F and χ(H) = d k

t−1e.
Therefore, χ(F) = d k

t−1e.
Consequently, if k

t−1 > 2, r = d k
t−1e − 1, and g(n) is defined as in Theorem 2.1 with

reference to F , then |E(Tn,r)|
g(n)

→ 1 as n→∞. Therefore, the minimum number of edges in an

(n, k, t)-graph, for k and t satisfying k > t > 2 and k > 2t− 2, is asymptotically equivalent,
as n→∞, to |E(T n,r)|, where r = d k

t−1e − 1. This conclusion by no means proves that T n,r
is a minimum (n, k, t)-graph for all n sufficiently large, which is a good thing, because that
conclusion would be false. For example, if t = 3, k = 6, so d k

t−1e = 3, by applying the main
result of [5] it can be seen that for all n ≥ 8 the unique (n, 6, 3)-graph with the fewest edges
among those with all components complete is K1 +T n−1,2. In this case, and in many others,
T n,r is an (n, k, t)-graph with number of edges (asymptotically as n→∞) close to smallest,
but not smallest, among (n, k, t)-graphs.
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However, the application of the Erdős-Stone Theorem to the (n, k, t) problem is intrigu-
ing. For those sharing our prejudices, the asymptotic result reinforces a belief in the truth
of the (n, k, t) conjecture. It also points out the following, a nice result that we neglected to
include in [5].

Theorem 2.2 Suppose that k > t > 2 are integers, k
t−1 > 2, r = d k

t−1e − 1, and a =
k−1− r(t−1). For all sufficiently large n, the unique (n, k, t)-graph with the fewest number
of edges among those with every component complete is aK1 + T n−a,r.

Proof By Corollary 1 of [5], for n ≥ k + r− 1 an (n, k, t)-graph having only complete com-
ponents and with as few edges as possible will be one of (k−1−b(t−1))K1+T n−(k−1−b(t−1)),b
for 1 ≤ b ≤ r. In [5], r = bk−1

t−1 c; but this is equal to d k
t−1e − 1. Since, for each fixed pair

(s, b) with s ≥ 0 and b ≥ 0, |E(T n−s,b)| ∼ n2

2b
, for n sufficiently large the choice of b must be

b = r. �

The application of Theorem 1.2 to the (n, k, t) problem concerns values of k and t such
that k

t−1 ≤ 2, the values about which the Erdős-Stone Theorem has nothing to say.
The join of two graphs G and H, denoted G∨H, is the graph obtained from the disjoint

union of G and H by adding a complete bipartite graph between V (G) and V (H).

Lemma 2.3 Suppose that n > s ≥ 1 are integers. The unique graph of order n with vertex
cover number s with the most edges is Ks ∨Kn−s.

Proof Suppose |V (G)| = n and β(G) = s, and let S ⊂ V (G) be a minimum vertex cover.
Then V (G) \ S is an independent set of vertices; clearly G can have no more edges than the
copy of Ks ∨Kn−s obtained by putting in all S-S edges and all S-(V (G) \ S) edges.

On the other hand, G = Ks ∨ Kn−s has order n and vertex cover number n − α(G) =
n− (n− s) = s. �

Lemma 2.4 Let n > k > t > 2 be integers, and let G be a graph on n vertices. G is an
(n, k, t)-graph if and only if G contains no β-critical subgraph X such that |V (X)| ≤ k and
β(X) = k − t+ 1.

Proof If G is an (n, k, t)-graph then G is an (n, k, t)-graph; so for every subgraph Y of G
of order k, α(Y ) ≥ t, so β(Y ) = k − α(Y ) ≤ k − t. Therefore, every subgraph of G on k or
fewer vertices has vertex cover number less than k − t+ 1.

However, if G is not an (n, k, t)-graph then G has an induced subgraph H on k vertices
with clique number ω(H) ≤ t − 1. Then H is a subgraph of G of order k with α(H) =
ω(H) ≤ t − 1; we have that β(H) = k − α(H) ≥ k − t + 1. Hence we can find a β-critical
subgraph X of H with β(X) = k − t+ 1. �

Theorem 2.5 Suppose that k > t > 2. If k ≤ 2t − 2, then for every n > k the unique
(n, k, t)-graph with the fewest edges is (k − t)K1 +Kn−k+t.
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Proof Suppose that k ≤ 2t − 2, n > k, and G is an (n, k, t)-graph with the minimum
number of edges possible. Then G is an (n, k, t)-graph with the maximum number of edges
possible. By Lemma 2.4, G has no β-critical subgraph X on k or fewer vertices such that
β(X) = k − t + 1. As Theorem 1.2 gives f(k − t + 1) = 2(k − t + 1) ≤ k, it follows that G
has no β-critical subgraph X with β(X) = k− t+ 1, because such an X could have no more
than f(k − t+ 1) ≤ k vertices.

Therefore, β(G) ≤ k − t. By Lemma 2.3, G can have no more edges than does Kk−t ∨
Kn−k+t, and, if G has as many edges as that graph, then G = Kk−t ∨ Kn−k+t. Since
Kk−t ∨ Kn−k+t is an (n, k, t)-graph, it follows that G = Kk−t ∨ Kn−k+t, so G = Kk−t +
Kn−k+t = (k − t)K1 +Kn−k+t. �
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