2017

Application of an Extremal Result of Erdős and Gallai to the (n,k,t) Problem

Matt Noble
Middle Georgia State University, matthewhnoble@gmail.com

Peter Johnson
Auburn University Main Campus, johnspd@auburn.edu

Dean Hoffman
Auburn University, hoffmdg@auburn.edu

Jessica McDonald
Auburn University, mcdonald@auburn.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/tag

Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation
Noble, Matt; Johnson, Peter; Hoffman, Dean; and McDonald, Jessica (2017) "Application of an Extremal Result of Erdős and Gallai to the (n,k,t) Problem," Theory and Applications of Graphs: Vol. 4 : Iss. 2 , Article 1.
DOI: 10.20429/tag.2017.040201
Available at: https://digitalcommons.georgiasouthern.edu/tag/vol4/iss2/1

This article is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It has been accepted for inclusion in Theory and Applications of Graphs by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Abstract

An extremal result about vertex covers, attributed by Hajnal [4] to Erdős and Gallai [2], is applied to prove the following: If \(n, k, \) and \(t \) are integers satisfying \(n \geq k \geq t \geq 3 \) and \(k \leq 2t - 2 \), and \(G \) is a graph with the minimum number of edges among graphs on \(n \) vertices with the property that every induced subgraph on \(k \) vertices contains a complete subgraph on \(t \) vertices, then every component of \(G \) is complete.

Keywords and phrases: vertex cover, independent set, matching, \((n,k,t)\) problem, Erdős-Stone Theorem, Turán’s Theorem, Turán graph

1 Introduction

All graphs here will be finite, non-null, and simple. A vertex cover of a graph \(G \) is a set \(S \subset V(G) \) that contains at least one endpoint of every edge in \(G \). The vertex cover number of \(G \) is the minimum size of a vertex cover of \(G \), and is denoted by \(\beta(G) \). This parameter is monotone – that is, \(\beta(H) \leq \beta(G) \) for all subgraphs \(H \) of \(G \). Deleting a vertex or an edge of \(G \) causes the vertex cover number to go down by at most 1. An edge or vertex of \(G \) whose removal causes such a decrease is said to be \(\beta \)-critical (or vertex-cover critical) for \(G \). The graph \(G \) itself is said to be \(\beta \)-critical or vertex-cover critical if \(\beta(H) < \beta(G) \) for every proper subgraph \(H \) of \(G \). It is easy to see that \(G \) is \(\beta \)-critical if and only if \(G \) has no isolated vertices and every edge of \(G \) is \(\beta \)-critical for \(G \). In particular, this means that if \(\beta(G) > 0 \), then \(G \) has a vertex-cover critical subgraph \(H \) with \(\beta(H) = \beta(G) \).

If \(S \subset V(G) \) is a vertex cover if and only if \(V(G) \setminus S \) is independent: from this it is easy to see that, if \(\alpha(G) \) is the vertex independence number of \(G \), the size of a largest independent (mutually non-adjacent) set of vertices, then \(\alpha(G) + \beta(G) = |V(G)| \). Therefore, a graph \(G \) is \(\beta \)-critical if and only if \(G \) has no isolated vertices and, for each \(e \in E(G) \), \(\alpha(G-e) = \alpha(G)+1 \). With this in mind, it is easy to verify that the following are \(\beta \)-critical: (i) \(K_n \) for \(n \geq 2 \); (ii) odd cycles; and (iii) matchings.

In conformity with the notation by which \(G + H \) denotes the disjoint union of \(G \) and \(H \), a matching with \(s \) edges will be denoted \(sK_2 = K_2 + \cdots + K_2 \). Clearly \(\beta(sK_2) = s \).

If \(G \) is bipartite, the König-Egerváry Theorem ([1], [6]) says that \(\beta(G) \) is the maximum number of edges in a matching in \(G \). Therefore, a non-empty bipartite graph is vertex-cover critical if and only if it is a matching.

The extremal result of Erdős and Gallai [2] referred to in the title of this paper concerns the function \(f \) defined for \(s = 1, 2, \ldots \) as

\[
f(s) = \max\{|V(G)| : G \text{ is } \beta \text{-critical and } \beta(G) = s\}.
\]

The result is that \(f(s) = 2s \). We have not been able to obtain a copy of [2]; we found an attribution to [2] of this result in [4], where Hajnal provides a short proof, suggesting that the proof in [2], a 23-page paper, is not very short. Later in [4], Hajnal, apparently without realizing it, provides an even shorter proof that supplies a stronger conclusion: not only is it true that \(f(s) = 2s \), but, also, \(sK_2 \) is the only \(\beta \)-critical graph on \(2s \) vertices with vertex cover number \(s \). We will give this proof here, in a form that the reader will not find in [4]. Hajnal there is driving toward a dual form of the result, based on the fact that \(S \) is a vertex...
cover of G if and only if $V(G) \setminus S$ induces a complete graph in G, the complement of G.

Here is our translation of his second proof. The word “cover” will mean vertex cover. If $S \subset V(G)$, $N_G(S) = \{u \in V(G) : uv \in E(G) \text{ for some } v \in S\}$.

Lemma 1.1 Suppose that G is β-critical and $I \subset V(G)$ is an independent set of vertices. Then $|I| \leq |N_G(I)|$.

Proof The proof will be by induction on $|I|$. Since G has no isolated vertices, the conclusion holds when $|I| = 1$.

Suppose $|I| > 1$, and suppose that $|I| \geq |N_G(I)| + 1$. We will deduce a contradiction. Let $v \in I$ and $I' = I \setminus \{v\}$. By the induction hypothesis, $|N_G(I)| \leq |I| - 1 = |I'| \leq |N_G(I')| \leq |N_G(I)|$. Therefore, $|I'| = |N_G(I')| = |N_G(I)|$, so $N_G(I') = N_G(I)$. Now let H be the induced subgraph of G with vertex set $V(H) = I' \cup N_G(I)$. Also by induction, for every $J \subset I'$, $|J| \leq |N_G(J)|$. Therefore, by Hall’s Theorem, H has a perfect matching M.

Since v is not an isolated vertex, $vw \in E(G)$ for some $w \in N_G(I)$. Since G is β-critical, $G - vw$ has a cover C of size $\beta(G) - 1$. Let $C' = C \setminus (I \cup N_G(I))$ and $C'' = C \cap (I \cup N_G(I))$. Since all edges of $G - vw$ having both ends in $I \cup N_G(I)$ must be covered by C'', C'' must cover M, so $|C''| \geq |M| = |N_G(I)|$. Thus $|C' \cup N_G(I)| = |C'| + |N_G(I)| \leq |C'| + |C''| = |C' \cup C''| = |C| = \beta(G) - 1$.

But C' covers all edges of G with neither end in $I \cup N_G(I)$, and $N_G(I)$ covers each edge of G with at least one end in $I \cup N_G(I)$, because I is independent, so $C'' \cup N_G(I)$ is a cover of G. Therefore, $|C' \cup N_G(I)| \leq \beta(G) - 1$ is a contradiction. \hfill \square

Theorem 1.2 If G is vertex-cover critical then $|V(G)| \leq 2\beta(G)$, with equality if and only if G is isomorphic to $\beta(G)K_2$.

Proof Let S be a minimum cover of G; $|S| = \beta(G)$. Let $I = V(G) \setminus S$, an independent set; since S is a cover, $N_G(I) = S$. By Lemma 1.1, $|I| \leq |S|$, so $|V(G)| = |I| + |S| \leq 2|S| = 2\beta(G)$. If $|V(G)| = 2\beta(G)$, then $|I| = |S|$. By Lemma 1.1, $|J| \leq |N_G(J)|$ for all $J \subset I$. Therefore, by Hall’s Theorem, there is a perfect matching M in G; M is isomorphic to $\beta(G)K_2$. Since $\beta(M) = \beta(G)$ and G is β-critical, it must be that $M = G$. \hfill \square

2 Application to the (n, k, t) Problem

Suppose $n \geq k \geq t$ are positive integers. An (n, k, t)-graph is a graph on n vertices such that every induced subgraph of order k contains a clique of order t. The (n, k, t) problem is to determine, for each triple (n, k, t), all the minimum (n, k, t)-graphs – that is, the (n, k, t)-graphs with the fewest edges. When $t = 1$ the only such graph is the graph with n isolated vertices, and when $t = 2$, the problem can be seen as a complementary version of Turán’s Theorem [7]; hence the unique minimum $(n, k, 2)$-graphs are $T_{n,k-1}$, where $T_{n,r}$ denotes the Turán graph on n vertices with r parts. Other easy cases include $k = t \geq 2$ and $n = k$, where the unique extremal graphs are K_n and $(n-t)K_1 + K_t$, respectively [5].

The (n, k, t) conjecture is that whenever $n \geq k \geq t$, some minimum (n, k, t)-graph has complete components. The strong (n, k, t) conjecture is that every minimum (n, k, t)-graph has complete components. If the strong (n, k, t) conjecture holds then the (n, k, t) problem is
essentially solved in [5] – the extremal graphs are all $aK_1 + T_{n-a,b}$ for particular non-negative integers a,b – although there is room for improvement in the determination of a and b given in [5].

Theorem 2.1 (Erdős and Stone [3]) Suppose F is a family of graphs containing no empty graph, and let

$$g(n) = \max\{|E(G)| : |V(G)| = n \text{ and no member of } F \text{ is a subgraph of } G\}.$$

Let $\chi(F) = \min\{\chi(H) : H \in F\}$, and suppose that $\chi(F) > 2$. Let $r = \chi(F) - 1$. Then

$$\frac{|E(T_{n,r})|}{g(n)} \to 1 \text{ as } n \to \infty.$$

Explanation: The name F was chosen to connote forbidden subgraphs. Clearly no graph with chromatic number $r = \chi(F) - 1$ can contain a subgraph from F, and clearly the Turán graph $T_{n,r}$ is the graph on n vertices of that chromatic number with the most edges, if $n \geq r$. Therefore, $|E(T_{n,r})| \leq g(n)$, for $n \geq r$. The Erdős-Stone Theorem asserts that if F contains no bipartite graph, then, asymptotically, $|E(T_{n,r})| \sim g(n)$.

In the original Erdős-Stone Theorem, F was a singleton; but the more general theorem follows easily from the original, by the following argument. Given F, let $H \subset F$ be such that $\chi(H) = \chi(F) > 2$, and set $F' = \{H\}$. Let g' be defined with reference to F' as g was defined with reference to F. Clearly, $g'(n) \geq g(n)$ for all n, so, for $n \geq r = \chi(F) - 1$, 1 $\geq \frac{|E(T_{n,r})|}{g(n)} \geq \frac{|E(T_{n,r})|}{g'(n)} \to 1$ as $n \to \infty$.

To apply the Erdős-Stone Theorem to the (n,k,t) problem, we define an $(\bar{n},\bar{k},\bar{t})$-graph to be the complement of an (n,k,t)-graph. In other words, an $(\bar{n},\bar{k},\bar{t})$-graph is a simple graph on n vertices such that every subgraph H of order k has vertex independence number $\alpha(H) \geq t$. (Notice the absence of the word “induced” in this description.) Clearly the (n,k,t) problem is equivalent to the problem of describing the $(\bar{n},\bar{k},\bar{t})$-graphs with the most edges.

Fix $k > t > 2$. For $n \geq k$, an $(\bar{n},\bar{k},\bar{t})$-graph is a graph on n vertices with no subgraph from $F = \{H : |V(H)| = k \text{ and } \alpha(H) \leq t - 1\}$. Since $\chi(H) \geq \frac{|V(H)|}{\alpha(H)}$ for any graph H, $\chi(F) \geq \lceil \frac{k}{t-1} \rceil$. On the other hand, there exists a complete multipartite graph H with $\lceil \frac{k}{t-1} \rceil \geq 2$ parts on k vertices with maximum part size $t-1$. Clearly $H \in F$ and $\chi(H) = \lceil \frac{k}{t-1} \rceil$. Therefore, $\chi(F) = \lceil \frac{k}{t-1} \rceil$.

Consequently, if $\frac{k}{t-1} > 2$, $r = \lceil \frac{k}{t-1} \rceil - 1$, and $g(n)$ is defined as in Theorem 2.1 with reference to F, then $\frac{|E(T_{n,r})|}{g(n)} \to 1$ as $n \to \infty$. Therefore, the minimum number of edges in an (n,k,t)-graph, for k and t satisfying $k > t > 2$ and $k > 2t - 2$, is asymptotically equivalent, as $n \to \infty$, to $|E(T_{n,r})|$, where $r = \lceil \frac{k}{t-1} \rceil - 1$. This conclusion by no means proves that $T_{n,r}$ is a minimum (n,k,t)-graph for all n sufficiently large, which is a good thing, because that conclusion would be false. For example, if $t = 3$, $k = 6$, so $\lceil \frac{k}{t-1} \rceil = 3$, by applying the main result of [5] it can be seen that for all $n \geq 8$ the unique $(n,6,3)$-graph with the fewest edges among those with all components complete is $K_1 + T_{n-1,2}$. In this case, and in many others, $T_{n,r}$ is an (n,k,t)-graph with number of edges (asymptotically as $n \to \infty$) close to smallest, but not smallest, among (n,k,t)-graphs.
However, the application of the Erdős-Stone Theorem to the \((n,k,t)\) problem is intriguing. For those sharing our prejudices, the asymptotic result reinforces a belief in the truth of the \((n,k,t)\) conjecture. It also points out the following, a nice result that we neglected to include in [5].

Theorem 2.2 Suppose that \(k > t > 2\) are integers, \(\frac{k}{t-1} > 2\), \(r = \left\lceil \frac{k}{t-1} \right\rceil - 1\), and \(a = k - 1 - r(t - 1)\). For all sufficiently large \(n\), the unique \((n,k,t)\)-graph with the fewest number of edges among those with every component complete is \(aK_1 + \overline{T}_{n-a,r}\).

Proof By Corollary 1 of [5], for \(n \geq k + r - 1\) an \((n,k,t)\)-graph having only complete components and with as few edges as possible will be one of \((k - 1 - b(t - 1))K_1 + \overline{T}_{n-(k-1-b(t-1)),b}\) for \(1 \leq b \leq r\). In [5], \(r = \left\lfloor \frac{k-1}{t-1} \right\rfloor\); but this is equal to \(\left\lceil \frac{k}{t-1} \right\rceil - 1\). Since, for each fixed pair \((s,b)\) with \(s \geq 0\) and \(b \geq 0\), \(|E(\overline{T}_{n-s,b})| \sim \frac{n^2}{2b}\), for \(n\) sufficiently large the choice of \(b\) must be \(b = r\).

The application of Theorem 1.2 to the \((n,k,t)\) problem concerns values of \(k\) and \(t\) such that \(\frac{k}{t-1} \leq 2\), the values about which the Erdős-Stone Theorem has nothing to say.

The **join** of two graphs \(G\) and \(H\), denoted \(G \vee H\), is the graph obtained from the disjoint union of \(G\) and \(H\) by adding a complete bipartite graph between \(V(G)\) and \(V(H)\).

Lemma 2.3 Suppose that \(n > s \geq 1\) are integers. The unique graph of order \(n\) with vertex cover number \(s\) with the most edges is \(K_s \vee \overline{K}_{n-s}\).

Proof Suppose \(|V(G)| = n\) and \(\beta(G) = s\), and let \(S \subset V(G)\) be a minimum vertex cover. Then \(V(G) \setminus S\) is an independent set of vertices; clearly \(G\) can have no more edges than the copy of \(K_s \vee \overline{K}_{n-s}\) obtained by putting in all \(S-S\) edges and all \(S-(V(G) \setminus S)\) edges.

On the other hand, \(G = K_s \vee \overline{K}_{n-s}\) has order \(n\) and vertex cover number \(n - \alpha(G) = n - (n - s) = s\).

Lemma 2.4 Let \(n > k > t > 2\) be integers, and let \(G\) be a graph on \(n\) vertices. \(G\) is an \((n,k,t)\)-graph if and only if \(\overline{G}\) contains no \(\beta\)-critical subgraph \(X\) such that \(|V(X)| \leq k\) and \(\beta(X) = k - t + 1\).

Proof If \(G\) is an \((n,k,t)\)-graph then \(\overline{G}\) is an \((\overline{n},k,t)\)-graph; so for every subgraph \(Y\) of \(\overline{G}\) of order \(k\), \(\alpha(Y) \geq t\), so \(\beta(Y) = k - \alpha(Y) \leq k - t\). Therefore, every subgraph of \(\overline{G}\) on \(k\) or fewer vertices has vertex cover number less than \(k - t + 1\).

However, if \(G\) is not an \((n,k,t)\)-graph then \(G\) has an induced subgraph \(H\) on \(k\) vertices with clique number \(\omega(H) \leq t - 1\). Then \(\overline{H}\) is a subgraph of \(\overline{G}\) of order \(k\) with \(\alpha(\overline{H}) = \omega(H) \leq t - 1\); we have that \(\beta(\overline{H}) = k - \alpha(\overline{H}) \geq k - t + 1\). Hence we can find a \(\beta\)-critical subgraph \(X\) of \(\overline{H}\) with \(\beta(X) = k - t + 1\).

Theorem 2.5 Suppose that \(k > t > 2\). If \(k \leq 2t - 2\), then for every \(n > k\) the unique \((n,k,t)\)-graph with the fewest edges is \((k - t)K_1 + K_{n-k+t}\).
Proof Suppose that \(k \leq 2t - 2 \), \(n > k \), and \(G \) is an \((n,k,t)\)-graph with the minimum number of edges possible. Then \(\overline{G} \) is an \((n,k,t)\)-graph with the maximum number of edges possible. By Lemma 2.4, \(\overline{G} \) has no \(\beta \)-critical subgraph \(X \) on \(k \) or fewer vertices such that \(\beta(X) = k - t + 1 \). As Theorem 1.2 gives \(f(k - t + 1) = 2(k - t + 1) \leq k \), it follows that \(\overline{G} \) has no \(\beta \)-critical subgraph \(X \) with \(\beta(X) = k - t + 1 \), because such an \(X \) could have no more than \(f(k - t + 1) \leq k \) vertices.

Therefore, \(\beta(\overline{G}) \leq k - t \). By Lemma 2.3, \(\overline{G} \) can have no more edges than does \(K_{k-t} \lor K_{n-k+t} \), and, if \(\overline{G} \) has as many edges as that graph, then \(\overline{G} = K_{k-t} \lor K_{n-k+t} \). Since \(K_{k-t} \lor K_{n-k+t} \) is an \((n,k,t)\)-graph, it follows that \(\overline{G} = K_{k-t} \lor K_{n-k+t} \), so \(G = K_{k-t} \lor K_{n-k+t} \).

\[\square \]

References