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COMPUTATIONAL ANALYSIS TO ENHANCE LAMINAR FLOW CONVECTIVE HEAT 

TRANSFER RATE IN AN ENCLOSURE USING AEROSOL NANOFLUIDS 

by 

ANDREW HUDSON 

(Under the Direction of Mosfequr Rahman) 

ABSTRACT 

 The current research intends to provide a starting point to effectively model aerosol heat transfer 

in a narrow, enclosed body.  This research can lead to future modeling of nano fluids including their heat 

transfer characteristics and erosion effects on the walls of an enclosure.   

 The model was developed using ICEM CFD for the mesh and FLUENT for the fluid flow 

modeling. Six different aspect ratio enclosures were developed to study the effects of varying aspect ratio. 

The natural convection of air was developed first to establish the appropriateness of the models being 

used. A mesh check was performed using one of the natural convection cases to ensure the mesh was 

appropriate.  The forced convection of air was then developed. The velocity vector, isotherm, surface heat 

flux, and surface nusselt number were recorded for future comparison to models. The models for 

nanoparticle natural convection were then activated to ensure the distribution of particles was as expected. 

 This research proved that nanoparticle tracking can be accomplished with a computer model 

instead of using the traditional volume ratio method. The effects of aspect ratio on the surface heat flux as 

well as surface nusselt number were recorded for both natural and forced convection of air.   

 The development of the appropriate model for particle tracking is started and proven to be valid.  

The natural convection and forced convection of air has been solved for future comparison to natural and 

forced convection. 

 

INDEX WORDS: Nanoparticles, Aerosol, Heat transfer, Forced convection, Nano fluid, Georgia 

Southern University, Master of Science in Applied Engineering 
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Chapter 1. Introduction 

 

  As modern electronic devices are continually miniaturized, the cooling of these devices 

becomes more difficult. The difficulty in cooling these devices arises from the trend towards thinness and 

the close packaging of components. This trend reduces the amount of space available for cooling air flow, 

while the close packaging of the components increases the heat density within the device.  Both of these 

characteristics lead to increased temperatures in devices.  This increase in temperature causes the failure 

rate of the devices to increase making it necessary to find ways to provide more cooling. This situation 

was explained in “Growing power densities are making thermal consideration a first-class citizen in the 

design and deployment of next-generation servers and data centers.” (Choi, Kim, Sivasubramaniam, 

Srebric, Wang and Lee 2008, 1129-1142). 

In the case of modern production computers forced air cooling is the most popular method since it 

is economic and simple to implement. To implement an air cooling system vents are placed at various 

locations around the device, and a fan is placed at one or more of these vents. The fan moves ambient air 

through the device allowing the air to absorb heat from the components. The air is then expelled from the 

device taking the heat with it. This results in the device being kept at a lower temperature. 

Most modern computers that cannot be adequately cooled using forced air cooling use a forced 

liquid cooling system. This consists of a closed loop system that uses specialized heat sinks on each 

component of the computer that requires cooling. These heat sinks have fluid cavities attached to them 

and tubing connects to these cavities. A pump pushes liquid from a reservoir tank into these heat sinks, 

then the liquid flows to another heat exchanger that expels the heat from the liquid to the atmosphere. The 

seals that keep the liquid separated from the electronic components must be absolutely perfect or this 

system can destroy the computer. A potential system that could be developed involves using 

characteristics of both forced liquid cooling and forced air cooling. If the heat transfer of the air could be 

increased using an additive the system could be cooled more effectively.  This system would require that 

the device contains a closed cooling loop similar to the forced liquid system described above. It has the 

potential to only require seals on the exterior surfaces of the device allowing the cooling air stream to 

affect the entire device unlike air cooling. This system would also have less catastrophic consequences if 

a leak develops. 

Current research proposes that by including nanoparticles in a cooling airflow the heat transfer of 

the air flow will increase. A nanoparticle can be defined as particles of various materials that have at least 
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one dimension between 1 and 100 nm (Sundar and Sharma 2008, 121- 129). For the purposes of this 

research only man made nanoparticles used to increase the heat transfer of base fluids will be considered. 

By including the nanoparticles in the air stream, an air based is created. It has been shown during various 

studies that adding a small volume fraction of metal or metal oxide powders to fluids increase the thermal 

conductivities of the particle-fluid mixture over those of the base fluid (Wang, Xu and Choi 1999, 474- 

480). This increase in thermal conductivity will lead to the mixture absorbing more heat from the 

components as well as achieving the transfer faster. 

The idea of using nanoparticles to increase the heat transfer of a base fluid has been explored 

since 1993 (Masuda, Ebata, Teramae and Hishinuma 1993, 227-233). The basic idea of increasing the 

heat transfer of a fluid by introducing particles of metal has been used for more than 100 years (Trisaksri 

and Wongwises 2005, 512-523). In the past the particles used have been on the scale of millimeter or 

micrometer. These particles have problems with sedimentation, erosion, and large pressure drop in the 

system (Trisaksri and Wongwises 2005, 512-523). The use of nanoparticles can achieve increases in heat 

transfer without as severe problems arising. 

For the purposes of this study a simplified model was used to evaluate the increase in heat 

transfer of air when nanoparticles are included in the flow. This research states that if the introduction of 

nanoparticles into a cooling air stream is incurred, then an optimal amount of nanoparticles can increase 

the heat transfer from the surrounding area. 

 Previous research has been performed on liquid based nano fluids for cooling purposes. Recently 

natural convection of gas based nano fluids has been performed as well. There has been little to no work 

done in the field of forced convection of aerosol nanoparticle systems. Forced convection has greater 

potential for cooling than natural convection making it a topic worthy of researching.   

This research can lead to a more thorough understanding of heat transfer. This will allow future 

researchers and engineers to have more tools available for future products and designs.   
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Chapter 2. Literature Review 

 

 According to the researcher’s knowledge the earliest published work that specifically mentioned 

use of nano particles in suspension to increase heat transfer was in 1993. This research used ultra-fine 

particles of Al2O3, SiO2, and TiO2 with particle sizes that varied from 12 to 27nm depending on the 

material. These particles were suspended in water. This research utilized a hot wire experiment and 

measured the viscosity of the various solutions containing the ultra-fine particles at weight fractions from 

2.3 to 16 percent. The thermal conductivity was found to increase for the solutions containing Al2O3 and 

TiO2 ultra-fine particles as the concentrations increased. Viscosity was also found to increase with the 

addition of these ultra-fine particles. (Masuda, Ebata, Teramae and Hishinuma 1993, 227-233). 

 The first mention of the term was made in a technical report published in 1995 titled "Enhancing 

thermal conductivity of fluids with nanoparticles." The authors of this paper coined the term and defined 

them as "heat transfer fluids which contain metallic particles with average particle sizes of about 10 

nanometers" (Choi and Eastman 1995). Choi and Eastman also stated that the increased surface area of 

nanoparticles will allow significantly higher heat transfer capabilities when compared to conventional 

micrometer-sized particles (Choi and Eastman 1995). 

 In the past decade and a half there has been a dramatic increase in research in the field of nano 

fluids. There have been theoretical models developed starting with Choi and Eastman. They observed that 

using an equation developed by Hamilton and Crosser equation they found good agreement when 

compared to previous experimental results (Choi and Eastman 1995). 

 As the research on nanoparticles for heat transfer has progressed through time the understanding 

of them has increased. This increase in understanding has allowed researchers to produce better results. In 

1999, Wang, Xu, and Choi have studied the effect of adding nanoparticles to distilled water, vacuum 

pump fluid, ethylene glycol and engine oil. They used nanoparticles of Al2O3 and CuO. When the 

researchers attempted to compare the results that they found with the results from previous researchers the 

numbers did not match. They found that while they were using the same materials they were not using the 

same method for mixing of the fluid. The particles they were using also had different diameters when 

compared to the previous research. Based on these findings they stated that as the diameter of the particles 

decreases, the thermal conductivity of the resulting fluid increased. They also stated that the method of 

mixing the also had an effect on the final fluids properties. (Wang, Xu and Choi 1999, 474- 480) 
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 In 2008 Kulkarni, Namburu, Bargar, and Gas studied the effect of SiO2 as nano size particles had 

when mixed into an ethylene glycol mixture. They used nanoparticles with diameters of 20 nm, 50 nm, 

and 100 nm. They observed the changes in the viscosity, convective heat transfer, and pressure loss. They 

found that as particle size increases the heat transfer coefficient increases at a fixed Reynolds number. 

Viscosity was dependent on particle concentration where higher particle concentrations lead to high 

viscosity values. Pressure loss was found to increase with respect to concentration. There was no 

appreciable change in pressure loss when the particle diameter was varied. Overall, they found that many 

of these characteristics are tied together and affect each other. (Kulkarni, Namburu, Bargar and Das 2008, 

1027-1035) 

In 2010 Mosavian, Heris, Etemad, and Esfahany compared three different nanoparticles in water. 

They used Al2O3, CuO, and Cu to find that metallic particles have a higher heat transfer than oxide 

particles do. They also found that as the concentration of nanoparticles was increased the heat transfer to 

the fluid increased. There was an optimal level of nanoparticles for each of the particles. They also found 

that the experimental values of heat transfer were higher than was found by modeling the system as a 

single phase heat transfer correlation. (Mosavian, Heris, Etemad and Esfahany 2010, 2611-2619) 

 There are numerous methods available to make nanoparticles. Choi and Eastman mention gas-

phase condensation where the base material is evaporated, then rapidly condensed in an inert low pressure 

environment. They also mention a method of production where a solution of the base material is made, 

then sprayed through a nozzle. The resulting spray is then rapidly air dried. (Choi and Eastman 1995) 

 The mechanisms that act on nanoparticles in fluids are very complex and varied. Some of the 

mechanisms that take place include Brownian motion and thermophoresis motion (Mädler and 

Friedlander 2007, 301-342). Brownian motion is the random motion of the nanoparticles in a base fluid 

that results from the collisions that occur between the nanoparticles and the base particles (Buongiorno 

2006, 240-250). This motion is based on the random motion that all particles have because of their 

internal energy. The nanoparticles are constantly colliding with other nanoparticles as well as the particles 

of the base fluid. Thermophoresis is a motion that is caused by temperature gradient in the base fluid. This 

motion makes the particles move down the temperature gradient. This means that the particles will move 

from an area of higher temperature to an area of lower temperature. (Buongiorno 2006, 240-250). Both of 

these mechanisms cause the nanoparticles to move within the base fluid. This motion of the nanoparticles 

has a large effect on how they are able to transfer heat effectively. The nanoparticles are able to absorb 

heat from an area of high temperature and carry the energy to an area of lower temperature where it will 

be released. One other factor that affects the motion of the nanoparticles is the motion of the base fluid. 



14 

 

 It has been demonstrated that nanoparticles contained in aerosol solutions have a strong tendency 

to follow the air stream that contains them. It has also been shown that during CFD simulations the 

nanoparticles have more motion when the Brownian and Thermophoresis forces are accounted for 

(Akbar, Rahman and Ghiaasiaan 2009, 747-761). Thermophoresis was found to have the greatest effect 

on the deposition location of the nanoparticles leading to the particles gathering at the cold wall of the 

enclosure (Akbar, Rahman and Ghiaasiaan 2009, 747-761). 

 Two heat transfer mechanisms commonly researched are natural convection and forced 

convection. Natural convection is a mechanism that moves fluids away from areas of high temperature 

towards areas of low temperature. This occurs because the fluid touching the high temperature area is 

gaining energy and becoming less dense, this makes that part of the fluid move upward in the body of 

fluid. As the higher temperature fluid moves up the lower temperature, therefore more dense, fluid from 

the top moves down under the force of gravity to take its place. Forced convection is a mechanism that 

induces movement of a fluid by the application of an external force. Examples of the devices used to 

apply the external force are a fan or pump. Typically forced convection is used to increase heat transfer of 

a system when natural convection does not provide adequate heat transfer.   

 In 2009 Akbar, Rahman and Ghiaasiaan studied particle transport in an enclosure using a 

nanoparticle and air mixture. The computer simulation performed used an enclosure that was heated from 

one side and the movement of the particles was recorded. The various mechanisms of particle motion 

were turned on and off during the testing scenario to determine how strong each acts on the particles 

(Akbar, Rahman and Ghiaasiaan 2009, 747-761).     

 As has been shown many studies have been done on heat transfer using a liquid base. The study 

of using nanoparticles in suspension of air has previously been very lightly researched. The natural flow 

convection has been studied while the forced convection has not been previously explored. 
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Chapter 3. Method 

 

 For the purposes of this research, computer simulation was performed to develop a method to find 

the heat transfer characteristics of nano fluids. Various aspect ratio enclosures were used to determine the 

characteristics of the fluid. In this research work various enclosures with natural convection of air, forced 

convection of air, and natural convection of air with nano particles simulations were performed. 

 To perform all these numerical simulations, ICEM CFD was used to develop the geometry and 

mesh properties of the model. ANSYS-FLUENT was then used to simulate the effects of temperature and 

flow on the appropriate models. All simulations were performed for a 2D enclosure with the bottom of the 

enclosure held at a temperature of 350°K while the roof was held at a temperature of 300°K.  Two side 

walls were considered adiabatic during the natural convection experiments. During the forced convection 

numerical experiments, the left wall was considered to be a velocity inlet velocity and the right wall was 

considered a vent outlet.  All of the forced convection simulations were performed with an inlet Reynolds 

number of 50 to ensure the laminar flow regime. During the simulation process air velocity vector, air 

isotherm, surface heat flux, and surface Nusselt number are calculated. 

 To perform the simulations of this numerical experimentation multiple steps were performed. The 

first step is to use FLUENT to develop skills in the program. This was accomplished by creating the 1-1 

aspect ratio natural convection simulation and comparing these results with the previous research results. 

The first situation was solved for the natural convection of air in a closed narrow enclosure as shown in 

Figure 1. 

             

Figure 1. Natural convection of air experimental setup 

Hot wall at 350°K 

Cold wall at 300°K 
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 Once the natural convection of air had been completed the simulation was performed for the 

forced convection of air in the narrow enclosure. This involved opening the enclosure, and introducing 

the forced air flow necessary for forced convection to take place. This setup is illustrated in Figure 2.  

   

Figure 2. Forced convection of air experimental setup 

 Once the air only simulation was performed, the nanoparticles were introduced into the system to 

simulate the nanoparticles suspended in air. 

Governing Equations 

 The governing equations used include conservation of mass, conservation of momentum, and 

conservation of energy. 

  

  
                   (1) 

 

  
                                     (2) 

 

  
                                    (3) 

The vector form of the particle momentum equation [Chen, and McLaughlin 1995, 1129 – 1142, 

Elghobashi, Truesdell 1992, 655 – 700, Ounis, Ahmadi, and McLaughlin 1991, 235 – 250, and Thakurt, 

Chen, McLaughlin, and Kontomaris 1998, 4167 – 4182] can be expressed as: 

    TPBPGPGP
P

PP FFgVUUf
dt

Ud
V




 
                               (4)

 

Hot wall at 350°K 

Cold wall at 300°K 

Airflow 
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where 

C

d3
f PG
                        (5) 

The Brownian dispersion effect is represented by the inclusion of the random Brownian force term

BF


, whose Cartesian components are found from: 

2

1

tC

Td6
GF GP

iiB 












,                         (6) 

where t  is the time step in the numerical particle motion calculations, and iG  (i = 1, 2, 3) are three 

independent Gaussian random numbers (for the three coordinates) with zero means and unit variances.   

The particle thermophoresis force is obtained from the semi-empirical expression of: 

i
T
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where,  
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In Eq. (4), GU  represents the component of gas velocity at the particle’s location.  The position of a 

particle should also be updated by integrating the following equation: 

jP

j
u

dt
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,                (8) 

The ordinary differential equation set represented by Eqs. (4) and (8) were explicitly integrated over 

each time step according to: 
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where: 

PPVA        (11) 
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Mesh Setup 

 6 aspect ratio meshes setup were considered for this numerical research which includes 1×1, 2×1, 

4×1, 6×1, 8×1, and 10×1 aspect ratios. The meshes were all created with length units of cm.  The number 

of nodes on the left wall was maintained at 45 for all cases to ease comparison, and the top wall had 40 

nodes per length unit. The spacing and ratio values were maintained at the same values through the 

simulations for ease of comparison.  All of the values for mesh setup are shown in Table 1, Table 2, Table 

3, Table 4, Table 5 and Table 6 respectively. 

Table 1: 1×1 Mesh Setup Values 

Mesh Size 1x1 

  1 1 

Blocking Top Left 

Length (cm) 1 1 

Nodes 40 45 

Spacing 1/Ratio 

1 
0/2 0.01/1.15 

Spacing 2/Ratio 

2 
0/2 0.01/1.15 

 

Table 2: 2×1 Mesh Setup Values 

Mesh Size 2x1 

  2 1 

Blocking Top Left 

Length (cm) 2 1 

Nodes 80 45 

Spacing 1/Ratio 

1 
0/2 0.01/1.15 

Spacing 2/Ratio 

2 
0/2 0.01/1.15 
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Table 3: 4×1 Mesh Setup Values 

Mesh Size 4x1 

  4 1 

Blocking Top Left 

Length (cm) 4 1 

Nodes 160 45 

Spacing 1/Ratio 

1 
0/2 0.01/1.15 

Spacing 2/Ratio 

2 
0/2 0.01/1.15 

 

Table 4: 6×1 Mesh Setup Values 

Mesh Size 6x1 

  6 1 

Blocking Top Left 

Length (cm) 6 1 

Nodes 240 45 

Spacing 1/Ratio 

1 
0/2 0.01/1.15 

Spacing 2/Ratio 

2 
0/2 0.01/1.15 
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Table 5: 8×1 Mesh Setup Values 

Mesh Size 8x1 

  8 1 

Blocking Top Left 

Length (cm) 8 1 

Nodes 320 45 

Spacing 1/Ratio 

1 
0/2 0.01/1.15 

Spacing 2/Ratio 

2 
0/2 0.01/1.15 

 

Table 6: 10×1 Mesh Setup Values 

Mesh Size 10x1 

  10 1 

Blocking Top Left 

Length (cm) 10 1 

Nodes 400 45 

Spacing 1/Ratio 

1 
0/2 0.01/1.15 

Spacing 2/Ratio 

2 
0/2 0.01/1.15 

Numerical Setup for Natural Convection of Air in the Enclosure 

 A pressure based steady time solver was used.  The gravity was set to -9.81m/s
2
. The energy 

model as well as the viscous laminar model was used.  The materials were specified with air having a 

density specified by the ideal gas law, a specific heat of 10006.43 kg/m*s, a thermal conductivity of 0.242 

w/m*°K, a viscosity of 1.7894e-05 kg/m*s, and molecular weight of 28.966 kg/kgmol.  Aluminum was 

specified as having a density of 2719 kg/m
3
, specific heat of 871 j/kg*°K, and thermal conductivity of 

202.4 w/m*°k. 

 The boundary condition was set for the upper cold wall as a stationary wall with 300°K constant 

temperature.  The lower hot wall was defined as a stationary wall with a constant temperature of 350°K. 
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The left and the right side walls were defined as stationary, adiabatic walls with zero heat flux. All four 

walls were defined as being made of aluminum.  

 The solution method used pressure-velocity coupling scheme  defined as SIMPLE, the spatial 

discretization  gradient was set to least square cell based, the pressure was set as standard, the density was 

set to second order upwind, momentum was set to second order upwind, and energy was set to second 

order upwind.  The solution under relaxation factor for pressure was set to 0.3, density was set to 1, body 

forces was set to 1, momentum was set to 0.7, and energy was set to 1.  The scaled residuals equation for 

continuity was set to 1e-06, x-velocity was set to 1e-06, y-velocity was set to 1e-06, and energy was set to 

1e-06. 

Numerical Setup for Forced Convection of Air in the Enclosure 

 A pressure based steady time solver was used.  The gravity was set to -9.81m/s
2
. The energy 

model as well as the viscous laminar model was used.  The materials were specified with air having a 

density specified by the ideal gas law, a specific heat of 10006.43 kg/m*s, a thermal conductivity of 0.242 

w/m*°K, a viscosity of 1.7894e-05 kg/m*s, and molecular weight of 28.966 kg/kgmol.  Aluminum was 

specified as having a density of 2719 kg/m
3
, specific heat of 871 j/kg*°K, and thermal conductivity of 

202.4 w/m*°k. 

 The upper cold wall was stationary with 300°K constant temperature.  The lower hot wall was 

defined as a stationary with a constant temperature of 350°K.  Both stationary walls were specified as 

being made of aluminum. The left side has inlet velocity with a magnitude of 0.037911 m/s, in the x 

direction and a constant temperature of 300°K. The right side is an outlet vent with atmospheric pressure, 

and the backflow direction specification method as normal to boundary.  

 The solution method of pressure-velocity coupling scheme was defined as SIMPLE, the spatial 

discretization  gradient was set to least square cell based, the pressure was set as standard, the momentum 

was set to second order upwind, and energy was set to second order upwind.  The solution under 

relaxation factor for pressure was set to 0.3, density was set to 1, body forces was set to 1, momentum 

was set to 0.7, and energy was set to 1.  The scaled residuals equation for continuity was set to 1e-06, x-

velocity was set to 1e-06, y-velocity was set to 1e-06, and energy was set to 1e-06. 

Numerical Setup for Natural Convection with Nanofluid in the Enclosure 

 A pressure based steady time solver was used.  The gravity was set to -9.81m/s
2
. The energy 

model as well as the viscous laminar model, radiation P1, and the discrete phase models were used.  The 

discrete phase model was set to have interaction with the continuous phase, update DPM sources every 
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flow iteration, unsteady particle tracking, particle time step of 0.0005, and the number of time steps 

equals one.  The maximum number of tracking steps was set to be 15000, the step length factor was set to 

be 5, and the drag model was set to be spherical.  The particle radiation interaction and Brownian motion 

physical models were set.  The injection was set to have 125 particle streams, inert particles, and linear 

particle distribution.  The injected area was set as a line from the bottom left of the area to the top right of 

the area leaving a 0.25 cm gap from the walls.  The initial velocity of the particles was set to be 0 m/s, 

with a diameter of 1e-09 m, temperature of 300°K, and the injection continued for 0.05 seconds per 

1×1cm area being solved for.  This resulted in 12,500 particles being present for the 1x1 case, 25,000 

particles for the 2x1 case, 50,125 particles for the 4x1 case, 75,125 particles for the 6x1 case, 100,125 

particles for the 8x1 case, and 125,125 particles for the 10x1 case. 

The materials were specified with air having a density specified by the ideal gas law, a specific 

heat of 10006.43 kg/m*s, a thermal conductivity of 0.242 w/m*°K, a viscosity of 1.7894e-05 kg/m*s, 

molecular weight of 28.966 kg/kgmol, absorption coefficient of zero, scattering coefficient of zero, and 

the refractive index of 1.000293.  Aluminum was specified as having a density of 2719 kg/m
3
, specific 

heat of 871 j/kg*°K, and thermal conductivity of 202.4 w/m*°k.  The copper for the particle was defined 

as having a density of 8978 kg/m
3
, specific heat of 871 j/kg*°K, thermal conductivity of 387.6 w/m*°K, 

particle emissivity of 0.9, and particle scattering factor of 0.9. 

 The boundary condition was set for the upper cold wall as stationary, with 300°K constant 

temperature.  The lower hot wall was defined as stationary with a constant temperature of 350°K. The left 

wall was stationary with zero heat flux. The right wall was also stationary with zero heat flux. All four 

walls were defined as being made of aluminum with the boundary condition type for the DPM being 

reflective.  

 The solution method of pressure-velocity coupling scheme was defined as SIMPLE, the spatial 

discretization  gradient was set to least square cell based, the pressure was set as standard, the density was 

set to second order upwind, momentum was set to second order upwind, and energy was set to second 

order upwind.  The solution under relaxation factor for pressure was set to be 0.3, density was set to be 1, 

body forces was set to be 1, momentum was set to be 0.7, and energy was set to be 1.  The scaled 

residuals equation for continuity was set to be 1e-06, x-velocity was set to be 1e-06, y-velocity was set to 

be 1e-06, and energy was set to be 1e-06. 
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Convergence Testing 

 To ensure convergence, the models were solved until the scaled residuals plots stabilized. A xy 

plot of the static temperatures at a horizontal centerline was then created.  The solution was then run for 

an additional number of iterations, and the same xy plot was created. These two plots were then put 

together and compared.  Once these two plots fell on the same line the solution was considered 

converged. All of the cases had scaled residuals of at least 1e-04 while some values were as low as 1e-07.  

The values found from the simulations are shown in Table 7. 

Table 7. Convergence Criteria 

Scaled Residuals Nanofluid 

  Natural Convection Nanofluid 

  Continuity X-Velocity Y-Velocity Energy P1 

1-1 1.00E-05 1.00E-07 1.00E-07 1.00E-07 1.00E-07 

2-1 1.00E-04 1.00E-07 1.00E-07 1.00E-07 1.00E-07 

4-1 1.00E-04 1.00E-07 1.00E-07 1.00E-07 1.00E-07 

6-1 1.00E-04 1.00E-07 1.00E-07 1.00E-07 1.00E-07 

8-1 1.00E-04 1.00E-07 1.00E-07 1.00E-07 1.00E-07 

10-1 1.00E-04 1.00E-07 1.00E-07 1.00E-07 1.00E-07 

Mesh Check 

 The mesh was modified with different combinations of nodes on the top and left side.  The 

number of nodes for each refinement is shown in Table 8.  The original mesh has 1800 areas, refinement 

1 has 2750 areas, refinement 2 has 2250 areas, and refinement 3 has 1400 areas. 

Table 8. Mesh Refinement Values 

  Original Mesh Refinement 1 Refinement 2 Refinement 3 

  Top Left Top Left Top Left Top Left 

Length 1 1 1 1 1 1 1 1 

Nodes 40 45 50 55 45 50 35 40 

Spacing 1 0 0.01 0 0.01 0 0.01 0 0.01 

Ratio 1 2 1.15 2 1.15 2 1.15 2 1.15 

Spacing 2 0 0.01 0 0.01 0 0.01 0 0.01 

Ratio 2 2 1.15 2 1.15 2 1.15 2 1.15 
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Chapter 4. Findings and Analysis 

 

Appropriate Mesh Generation 

 The first thing that was checked was the appropriateness of the mesh that was developed.  This 

was accomplished by creating multiple meshes of the 1-1 area and simulating the natural convection of 

air.  The results for the centerline temperatures for four different cases are shown in Figure 3 

 

Figure 3. 1-1 Mesh Check Temp Centerline 

 Figure 3shows that refinement 1mesh had a constant centerline temperature, refinement 2 and the 

original meshes had the same centerline temperature; and refinement 3 mesh had the same temperatures 

as refinement 2 with the inversed positions.  Refinement 1 represented adding 10 nodes to each wall of 

the area and resulted in no natural convection within the domain which believed to have been from 

computer being unable to solve the domain. Refinement 2 represents adding 5 nodes to each wall of the 

area resulting in the same centerline temperature.  Refinement 3 represented taking 5 nodes away from 

each wall of the area and the centerline temperature was flipped with respect to the original. 

Velocity Vectors for Different Generated Meshes  

 The original mesh velocity vector is shown in Figure 4, the refinement 1 mesh velocity vector is 

shown in Figure 5, the refinement 2 mesh velocity vector is shown in Figure 6, and the refinement 3 

velocity vector is shown in Figure 7. Velocity vector for Refinement 1 mesh does not follow the same 

trend as the original mesh velocity vector or any of the other setups as shown in Figure 5. Refinement 2 
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mesh has a very similar velocity vector when compared to the original mesh as shown in Figure 6 and 

Figure 4. Refinement 3 mesh has a less smooth velocity vector as well as flowing in the opposite direction 

when compared to the original mesh as shown in Figure 7 and Figure 4. 

 

 

Figure 4. Original Mesh Velocity Vector 
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Figure 5. Refinement 1 Mesh Velocity Vector 

 

Figure 6. Refinement 2 Mesh Velocity Vector 
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Figure 7. Refinement 3 Mesh Velocity Vector 
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Isotherms for Different Generated Meshes  

The original mesh isotherm is shown in Figure 8, the refinement 1mesh isotherm is shown in Figure 9, the 

refinement 2 isotherm is shown in Figure 10, and the refinement 3 isotherm is shown in Figure 

11respectively.  The refinement 1 mesh isotherm is showing a linear temperature distribution unlike the 

other scenarios as shown in Figure 9. The refinement 2 mesh isotherm looks very similar to the original 

mesh isotherm as shown in Figure 10. The refinement 3 mesh isotherm has similar characteristics to the 

original mesh isotherm, but with it being flipped left to right. 

 

Figure 8. Original Mesh Isotherm 
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Figure 9. Refinement 1 Mesh Isotherm 

 

Figure 10. Refinement 2 Mesh Isotherm 



30 

 

 

Figure 11. Refinement 3 Mesh Isotherm 

 Over the course of this mesh check it was determined that the original mesh had very similar 

results to the second refinement. The first refinement does not show appropriate temperature distribution, 

so it was deemed as inappropriate.  The third refinement has results flipped left to right when compared to 

the other meshes.  Based on these results it was determined that the original mesh and the slightly finer 

mesh 2 were effectively the same, so the increased mesh was unnecessary.  Refinement 3 showed a 

different trend with less number of nodes than the original.  The original mesh was determined to be 

appropriate based on these findings. 
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Convergence Check 

 When the models were solved the scaled residuals were monitored until they stabilized. To ensure 

the model was converged the static temperature was plotted along a horizontal centerline.  This plot was 

done for two different iterations of the model.  This is shown for the natural convection cases in Figure 12 

for the 1-1 case, Figure 13 for the 2-1 case, Figure 14 for the 4-1 case, Figure 15 for the 6-1 case, Figure 

16 for the 8-1 case, and Figure 17 for the 10-1 case respectively.  For the forced convection cases the 

temperature centerlines are shown in Figure 18 for the 1-1 case, Figure 19 for the 2-1 case, Figure 20 for 

the 4-1 case, Figure 21 for the 6-1 case, Figure 22 for the 8-1 case, and Figure 23 for the 10-1 case 

respectively. These plots verify that the model was fully converged. 

 

Figure 12. Convergence for Case 1-1 in Natural Convection   
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Figure 13. Convergence for Case 2-1 in Natural Convection 

 

Figure 14. Convergence for Case 4-1 in Natural Convection 
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Figure 15. Convergence for Case 6-1 in Natural Convection 

 

Figure 16. Convergence for Case 8-1 in Natural Convection 
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Figure 17. Convergence for Case 10-1 in Natural Convection 

 

Figure 18. Convergence for Case 1-1 in Forced Convection 

310 

315 

320 

325 

330 

335 

340 

0 0.02 0.04 0.06 0.08 0.1 

St
at

ic
 T

e
m

p
e

ra
tu

re
 (

°K
) 

Position (m) 

Iteration 1 

Iteration 2 

299 

300 

301 

302 

303 

304 

305 

306 

0 0.002 0.004 0.006 0.008 0.01 

St
at

ic
 T

e
m

p
e

ra
tu

re
 (

°K
) 

Position (m) 

Iteration 1 

Iteration 2 



35 

 

 

Figure 19. Convergence for Case 2-1 in Forced Convection 

 

Figure 20. Convergence for Case 4-1 in Forced Convection 
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Figure 21. Convergence for Case 6-1 in Forced Convection 

 

Figure 22. Convergence for Case 8-1 in Forced Convection 
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Figure 23. Convergence for Case 10-1 in Forced Convection 

Velocity Vector 

 The velocity vectors were plotted for the natural convection and forced convection of air cases. 

The natural convection of air cases are shown in Figure 24 for the 1-1 case, Figure 25 for the 2-1 case, 

Figure 26 for the 4-1 case, Figure 27 for the 6-1 case, Figure 28 for the 8-1 case, and Figure 29 for the 10-

1 case respectively.  The forced convection cases are shown in Figure 30 for the 1-1 case, Figure 31 for 

the 2-1 case, Figure 32 for the 4-1 case, Figure 33 for the 6-1 case, Figure 34 for the 8-1 case, and Figure 

35 for the 10-1 case. 

 The natural convection cases showed a periodic air flow that was based on a repetition of the 1-1 

case shown in Figure 24. The 2-1 case has 2 circular air flows, the 4-1 case has 4 airflows, the 6-1 case 

has 5 circular air flows, the 8-1 case has 9 circular air flows, and the 10-1 case has 11 circular air flows. 

This shows that as the aspect ratio increases the number of circulating flows increases.    
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Figure 24. Velocity Vector for Natural Convection in 1-1 Aspect Ratio Case  

 

Figure 25. Velocity Vector for Natural Convection in 2-1 Aspect Ratio Case 
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Figure 26. Velocity Vector for Natural Convection in 4-1 Aspect Ratio Case  

 

Figure 27. Velocity Vector for Natural Convection in 6-1 Aspect Ratio Case 
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Figure 28. Velocity Vector for Natural Convection in 8-1 Aspect Ratio Case 

 

Figure 29. Velocity Vector for Natural Convection in 10-1 Aspect Ratio Case 
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 The forced convection cases showed a trend of rising as the flow went to the right of the area. 

This resulted in the flow reversing at the bottom right corner of the area. The forced convection cases are 

shown in Figure 30 for the 1-1 case, Figure 31 for the 2-1 case, Figure 32 for the 4-1 case, Figure 33 for 

the 6-1 case, Figure 34 for the 8-1 case, and Figure 35 for the 10-1 case respectively. 

 

 

Figure 30. Velocity Vector for Forced Convection in 1-1 Aspect Ratio Case 
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Figure 31. Velocity Vector for Forced Convection in 2-1 Aspect Ratio Case  

 

Figure 32. Vector for Forced Convection in 4-1 Aspect Ratio Case  
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Figure 33. Velocity Vector for Forced Convection in 6-1 Aspect Ratio Case 

 

Figure 34. Velocity Vector for Forced Convection in 8-1 Aspect Ratio Case 
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Figure 35. Velocity Vector for Forced Convection in 10-1 Aspect Ratio Case Isotherms 

Isotherm 

 The isotherm is a graphic that shows the temperature contour as lines that have a two and a half 

degree Kelvin temperature difference. This shows how the temperature changes within the enclosure. For 

natural convection the 1-1 case is shown in Figure 36, the 2-1 case is shown in Figure 37, the 4-1 case is 

shown in Figure 38, the 6-1 case is shown in Figure 39, the 8-1 case is shown in Figure 40, and the 10-1 

case is shown in Figure 41. The natural convection cases show a similar pattern to the natural convection 

velocity vectors.  The 1-1 case as shown in Figure 36 is repeated twice for the 2-1 case, four times for the 

4-1 case, five times for the 6-1 case, nine times for the 8-1 case, and eleven times for the 10-1 case. 
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Figure 36. Isotherm for Natural Convection in 1-1 Aspect Ratio Case  

 

Figure 37. Isotherm for Natural Convection in 2-1 Aspect Ratio Case 
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Figure 38. Isotherm for Natural Convection in 4-1 Aspect Ratio Case 

 

Figure 39. Isotherm for Natural Convection in 6-1 Aspect Ratio Case 
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Figure 40. Isotherm for Natural Convection in 8-1 Aspect Ratio Case 

 

Figure 41. Isotherm for Natural Convection in 10-1 Aspect Ratio Case 
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For forced convection, the 1-1 case is shown in Figure 42, the 2-1 case is shown in Figure 43, the 

4-1 case is shown in Figure 44, the 6-1 case is shown in Figure 45, the 8-1 case is shown in Figure 46, the 

10-1 case is shown in Figure 47. The forced convection cases show that the temperature profile does not 

fully encompass the area until the 6-1 case. It also shows a trend towards rising higher as the aspect ratio 

increases.   

 

Figure 42. Isotherm for Forced Convection in 1-1 Aspect Ratio Case 
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Figure 43. Isotherm for Forced Convection in 2-1 Aspect Ratio Case 

 

Figure 44. Isotherm for Forced Convection in 4-1 Aspect Ratio Case 
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Figure 45. Isotherm for Forced Convection in 6-1 Aspect Ratio Case 

.  

Figure 46. Isotherm for Forced Convection in 8-1 Aspect Ratio Case  
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Figure 47. Isotherm for Forced Convection in 10-1 Aspect Ratio Case  

Surface Heat Flux 

 The surface heat flux is a measurement of the rate of heat transfer through a surface per unit area. 

This is a value that can determine if more heat can be transferred by changing the characteristics of the 

area of the enclosure or fluid in use. For natural convection, surface heat flux along the hot and cold walls 

for the 1-1 aspect ratio case is shown in Figure 48, the 2-1 aspect ratio case is shown in Figure 49, the 4-1 

case is shown in Figure 50, the 6-1 case is shown in Figure 51, the 8-1 case is shown in Figure 52, and the 

10-1case is shown in Figure 53 respectively. The natural convection cases show a trend of having the 

same pattern for both the cold wall and hot wall with similar numeric values.  This is due to the 

conservation of energy. The pattern demonstrated by Figure 48 also repeats itself similarly to how the 

natural convection velocity vector can work. The heat flux from the hot wall is always positive indicating 

heat transfer from the wall into the fluid within the enclosure area while the cold wall heat flux is always 

negative indicating heat going into the wall from the fluid. 
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Figure 48. Surface Heat Flux for Natural Convection along Hot and Cold Walls for 1-1 Aspect Ratio Case  

 

Figure 49. Surface Heat Flux for Natural Convection along Hot and Cold Walls for 2-1 Aspect Ratio case 
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Figure 50. Surface Heat Flux for Natural Convection along Hot and Cold Walls for 4-1 Aspect Ratio case 

 

Figure 51. Surface Heat Flux for Natural Convection along Hot and Cold Walls for 6-1 Aspect Ratio case 
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Figure 52. Surface Heat Flux for Natural Convection along Hot and Cold Walls for 8-1 Aspect Ratio case 

 

Figure 53. Surface Heat Flux for Natural Convection along Hot and Cold Walls for 10-1 Aspect Ratio case 
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 For the forced convection, surface heat flux along the hot and cold walls for the 1-1 aspect ratio 

case is shown in Figure 54, the 2-1 case is shown in Figure 55, the 4-1 case is shown in Figure 56, the 6-1 

case is shown in Figure 57, the 8-1 case is shown in Figure 58, and the 10-1case is shown in Figure 59 for  

the cold wall and Figure 60 for the hot wall. The forced convection surface heat flux shows trends of the 

cold wall having negative heat flux while the how wall has positive heat flux. There is also a 

characteristic of having the beginning and end of the curves to jump in heat flux dramatically.  This is 

thought to be due to the developing air flow characteristics that exist at the beginning and end of the area. 

 

Figure 54. Surface Heat Flux for Forced Convection along Hot and Cold Walls for 1-1 Aspect Ratio Case 
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Figure 55. Surface Heat Flux for Forced Convection along Hot and Cold Walls for 2-1 Aspect Ratio Case  

 

Figure 56. Surface Heat Flux for Forced Convection along Hot and Cold Walls for 4-1 Aspect Ratio Case 
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Figure 57. Surface Heat Flux for Forced Convection along Hot and Cold Walls for 6-1 Aspect Ratio Case 

 

Figure 58. Surface Heat Flux for Forced Convection along Hot and Cold Walls for 8-1 Aspect Ratio Case 
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Figure 59. Surface Heat Flux for Forced Convection along Cold Wall for 10-1 Aspect Ratio Case  

 

Figure 60. Surface Heat Flux for Forced Convection along Hot Wall for 10-1 Aspect Ratio Case 
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Surface Nusselt Number 

 The nusselt number is a characteristic of the heat transfer whether the heat transfer is based on 

convection or conduction. With a nusselt number of 1 the conduction and convection are of similar 

magnitudes, while a large nusselt number corresponds to a more active convection. For the natural 

convection within the enclosure surface nusselt number along the hot and cold walls plot for the 1-1aspect 

ratio case is shown in Figure 61, the 2-1 aspect ratio case is shown in Figure 62, the 4-1 case is shown in 

Figure 63, the 6-1 case is shown in Figure 64, the 8-1 case is shown in Figure 65, and the 10-1 case is 

shown in Figure 66 respectively. For the forced convection of air within the enclosure surface nusselt 

number plot for the 1-1 aspect ratio case is shown in Figure 67, the 2-1 aspect ratio case is shown in 

Figure 68, the 4-1 case is shown in Figure 69, the 6-1 case is shown in Figure 70, the 8-1 case is shown in 

Figure 71, and the 10-1 case is shown in Figure 72 respectively.  

 

Figure 61. Surface Nusselt Number for Natural Convection along Hot and Cold Walls for 1-1 Aspect Ratio Case 
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Figure 62. Surface Nusselt Number for Natural Convection along Hot and Cold Walls for 2-1 Aspect Ratio Case 

 

Figure 63. Surface Nusselt Number for Natural Convection along Hot and Cold Walls for 4-1 Aspect Ratio Case  
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Figure 64. Surface Nusselt Number for Natural Convection along Hot and Cold Walls for 6-1 Aspect Ratio Case 

 

Figure 65. Surface Nusselt Number for Natural Convection along Hot and Cold Walls for 8-1 Aspect Ratio Case 
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Figure 66. Surface Nusselt Number for Natural Convection along Hot and Cold Walls for 10-1 Aspect Ratio Case 

 

Figure 67. Surface Nusselt Number for Forced Convection along Hot and Cold Walls for 1-1 Aspect Ratio Case 
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Figure 68. Surface Nusselt Number for Forced Convection along Hot and Cold Walls for 2-1 Aspect Ratio Case 

 

Figure 69. Surface Nusselt Number for Forced Convection along Hot and Cold Walls for 4-1 Aspect Ratio Case 
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Figure 70. Surface Nusselt Number for Forced Convection along Hot and Cold Walls for 6-1 Aspect Ratio Case 

 

Figure 71. Surface Nusselt Number for Forced Convection along Hot and Cold Walls for 8-1 Aspect Ratio Case 
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Figure 72. Surface Nusselt Number for Forced Convection along Hot and Cold Walls for 10-1 Aspect Ratio Case 

 

Natural Convection versus Forced Convection within the Enclosure 

 The average surface heat flux values for the natural convection of air and forced convection of air 

within the enclosure for 6 different aspect ratio cases were plotted together as shown in Figure 73.  In the 

case of the natural convection heat flux, the average heat flux increases with the increase of aspect ratio.  

This demonstrates that within the specified aspect ratios there are increases in heat flux to the fluid of the 

enclosure area as a result of more circular flow regions. In the case of the forced convection heat flux, as 

the aspect ratio increases the average heat flux decreases.  This leads to the conclusion that larger aspect 

ratio enclosures do not lead to an increase in heat flux for the forced convection cases. 
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Figure 73. Average Surface Heat Flux Compared to Aspect Ratio for Natural and Forced Convection of Air 

 The average nusselt number values for the natural convection of air and forced convection of air 

within the enclosure of 6 different aspect ratio cases were plotted together as shown in Figure 74.  The 

average nusselt number for the natural convection cases increase in magnitude with an increase in aspect 

ratio.  The average nusselt number of the forced convection cases decreases with an increase in aspect 

ratio. 
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Figure 74. Average Surface Nusselt Number Compared to Aspect Ratio for Natural and Forced Convection of Air 

Nanofluid Particle Tracking 

 The particle tracking within the closed enclosure were performed and are shown in Figure 75 for 

the 1-1 aspect ratio case, in Figure 76 for the 2-1 aspect ratio case, in Figure 77 for the 4-1 aspect ratio 

case, in Figure 78 for the 6-1 aspect ratio case, in Figure 79 for the 8-1 aspect ratio case, and in Figure 80 

for the 10-1 aspect ratio case.  These all show that the particles can have their flow paths modeled and 

they show a tendency to stay on the border of the enclosure.  
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Figure 75. Nanoparticle Tracking Within a 1-1 Aspect Ratio Enclosure 

 

Figure 76. Nanoparticle Tracking Within a 2-1 Aspect Ratio Enclosure  
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Figure 77. Nanoparticle Tracking Within a 4-1 Aspect Ratio Enclosure  

 

Figure 78. Nanoparticle Tracking Within a 6-1 Aspect Ratio Enclosure  
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Figure 79. Nanoparticle Tracking Within a 8-1 Aspect Ratio Enclosure 

 

Figure 80. Nanoparticle Tracking Within a 10-1 Aspect Ratio Enclosure 
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Chapter 5. Conclusions and Recommendations 

 This research has showed that there is a possibility of effectively modeling the nano fluid flows. 

The natural convection flows as well as forced convection flows of air within 6 different aspect ratios 

enclosures have been modeled and their appropriate surface heat flux and nusselt number along hot and 

cold walls corresponding to aspect ratio were recorded.  The initial model for flow has also been 

developed with the nanoparticle tracking being completed. The mesh developed was found to be 

appropriate for the modeling purposes. The natural convection cases showed a periodic tendency as the 

aspect ratio increased affecting the velocity vector, isotherm, surface heat transfer, and surface nusselt 

number. The natural convection cases increased the magnitude of their heat transfer as well as the surface 

nusselt number as the aspect ratio increased.  The forced convection models showed a tendency to fully 

develop the larger the aspect ratio that was used. Both the heat transfer and surface nusselt number 

decreased as the aspect ratio increased for the forced convection cases.  

Future work should include developing the set of models necessary to effectively model the heat 

transfer of a. This developed model could then be used to work on models for erosion in fluid flow 

passages as well. 
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