Romance of the Railroad

Robert G. Hughes (Ed.)
Romance of the Railroad

Auspices
Bulloch County Historical Society
Post Office Box 42
Statesboro, GA 30458
Contents

1. **Introduction** i
 Kemp Mabry

2. **Early Locomotives** 1
 Kemp Mabry

3. **Steam in the South: Some Aesthetic Considerations** 5
 John C. Paton

4. **Out with the Wagon Trains** 17
 Ed Milam

5. **Polly Milam** 29
 Kemp Mabry

6. **Scarboro: An Historical Perspective** 31
 Robert Jenkins and Daniel Good

7. **John David Cannon Photographs** 37

8. **Railroads of South Carolina: 1830-1863** 43
 Reprinted with permission from *La Posta*
 Robert J. Stets
Introduction

Romance of the Railroad is an effort to record and preserve some of the lore of railroading.

John Paton, reference librarian at Statesboro Regional Library and a railroad buff, opens the book with a factual article on railroads in southeast Georgia, beautifully illustrated with photographs of several locomotives.

Ed Milam has penned an intensely personal survey of changes in railroading in Georgia during his long career as a railroad man. Ed was my schoolmate half a century ago at Marietta High School and a fellow Boy Scout leader. Ed's grandfather "Polly" Milam was a legend in Marietta and on the W & A Railroad (later the NC & St. L) for over 50 years. We have added a brief note on Polly Milam after Ed's article, based on an Atlanta newspaper article of 1934.

Georgia Southern College Professor Dan Good and his student, Robert Jenkins, present an account of the decline of a railroad town, Scarborough, Georgia.

In the next section, Engineer John David Cannon, grandfather of Society member Evelyn Cannon Darley Mabry, is shown with several engines circa 1902-1905. Also shown is fireman Walter Cannon, her uncle.

Finally, we are pleased to reprint an article by Robert J. Stets from La Posta: A Journal of American Postal History entitled, "Railroads of South Carolina: 1830-1863." Stets is a former eastern editor of La Posta.

Kemp Mabry
President
Bulloch County Historical Society
December, 1988

Early Locomotives

by
Kemp Mabry

On October 1, 1987, the Postal Service issued a commemorative stamp booklet of five early U. S. locomotives, described as follows:

The Sturbridge Lion, built in Sturbridge, England, was the first actual locomotive to run in the U. S., but it was too heavy for the iron covered wooden tracks.

The Best Friend of Charleston was the first locomotive built in the U. S. It first ran on December 25, 1830, the first to pull a train, first to carry mail (unofficially) and 40 to 50 passengers up to 21 miles per hour. A replica of the Best Friend came to Statesboro several years ago, arranged by Mayor Thurman Lanier. Several of us were honorary engineers on the short exhibition runs on the track beside the Statesboro Recreation Center.

The John Bull was put into service in 1831 and was brought out of retirement in 1893, in 1927, in 1980 and in 1981 for its 150th anniversary. It is now in the Smithsonian as the oldest locomotive in the United States.

The Brother Jonathan, built in 1832, was the world's fastest locomotive at that time running 60 miles per hour.

The Gowen and Marx, built in 1838, was one of the most powerful locomotives of its time, pulling 101 cars, 40 times its own weight, at an average speed of 10 miles per hour.

By 1840, there were 2,800 miles of railroad track laid in the U. S. After 1850, the U. S. had almost as much rail mileage as all of the rest of the world combined.

The "Golden Era" of railroading peaked nearly 100 years ago. Now, as Bob Giles wrote in the Marietta Daily Journal, "Trains are... the dinosaurs of travel... they must follow a path laid out long ago,
or they are helpless. Is there anything more ineffectual than a string of massive train cars lying on their sides because they could not avoid a flawed section of track a fraction of their size."

Nevertheless, Americans have had a love affair with railroads and trains for over 150 years. This little volume seeks to preserve a bit of that nostalgia.

Postage Stamps

One of the first U.S. pictorial stamps featured a steam locomotive on a three cent stamp in 1869.

In 1901, an early train was pictured. In 1944, the completion of the Transcontinental Railroad was featured on a three cent commemorative stamp.

The Central Pacific Railroad and the Union Pacific Railroad constructed the first transcontinental railroad in America, 1,800 miles from Omaha, Nebraska, to Sacramento, California. Beginning at each end of the line, they met officially at Promontory, Utah, where a golden spike joined the two sets of track on May 10, 1869.

In 1950, the Railroad Engineers of America were honored with a three cent commemorative stamp, the center portion given to a picture of Casey Jones, our most famous and one of the most reckless engineers. His last, fatal, run was immortalized by an engine wiper who wrote the first of several versions of the "Casey Jones" ballad. The version I heard as a boy was wholly inaccurate, geographically, but it rhymed as follows:

Casey Jones gonna reach 'frisco
Gonna reach 'frisco—but we'll all be dead!

Actually, Casey was the only one killed in the crash of the Cannon Ball Express on April 30, 1900. He pulled out of Poplar Street Station at Memphis at 12:50 p.m., with Sim Webb, fireman, and J. C. Turner, conductor, leaving one hour and 35 minutes late.

Through South Memphis yards on the fly,
He heard the fireman say, "You got a white eye."
All the switchmen knew by the engine's moan
That the man at the throttle was Casey Jones.

By the time the Cannon Ball had reached Canton, Mississippi, he was on schedule but 10 miles down the track sat disaster in the form of a freight train left with the caboose and three cars protruding onto the main track.

John Luther "Casey" Jones crashed the Cannon Ball Express into the freight train at Vaughn, Mississippi, and became an American folk hero. Railroading was his first love. It is said that Janie, his wife, was the "cutest thing" but she came in second to railroading, according the Bruce Gurner, chronicler of the last ride of Casey Jones.

Come all you rounders if you want to hear
The story told of a brave engineer,
Casey Jones was the rounder's name,
A high right-wheeler of mighty fame.

In an article in the Marietta Daily Journal, Bruce Gurner is quoted as saying that Casey would have died of broken heart if he had lived because he would have been fired from his first love. He already had nine suspensions for safety violations from 1891 to 1899. Nevertheless, when I hear anything that sounds like an old steam whistle, I think I can tell by the engine's moan that the man at the throttle might be Casey Jones. Maybe you haven't lived if you haven't heard the Doppler sound effect of a steam whistle in the
distance as it approaches, passes, and fades into the distant past.

All the crew safe, you say,
And the passengers too?
Thank God, that is clever.
And his soft eyes closed
As his pale face smiled.
And he whistled down brakes forever.

Note: Readers interested in postage stamps commemorating the railroads and other fascinating topics of Americana may wish to read further in the Postal Service Guide to U.S. Stamps, available at many post offices for $5.00.

Steam in the South: Some Aesthetic Considerations

by John C. Paton

A number of factors combined to influence locomotive design and operation in the South during the Twentieth Century. Certain of these factors were common to the rail industry in general yet several were unique to the area, resulting in a very distinctive locomotive design policy. At the turn of the century, trains were short and the cars were relatively light being made chiefly of wood. As commerce increased, the size of trains did also. A railroad can handle just so many trains and the obvious solution was to make them longer. The introduction of steel cars played a major role as well, greatly increasing the weight per car. The result was bigger and more powerful locomotives.

Locomotive technology was improving as well. Its history is one of ever-increasing efficiency, a constant search to get the most ton-miles possible out of each lump of coal burned and drop of water evaporated. Virtually all of these improvements meant more parts, more machinery, more weight, hence, greater size. The railroads of the South took part in all of this general activity right through World War I. And then for a variety of reasons, it stopped. While the rest of the country continued in a quest for greater efficiency, greater speed, and, above all, greater horsepower, locomotive technology in the South ceased following the Great War.

It is here that the uniquely regional forces become the determining factors in locomotive design. Topography is a major influence. Compared to other parts of the United States, the South is relatively flat which means that really large, powerful engines are not required to move lengthy trains. Traffic patterns in the South were
relatively light with thousands of miles of lightly travelled branch lines. These lines were laid with smaller, lighter rail, insufficient to support really large locomotives with their great axle loadings and not economically viable enough to justify upgrading for heavier power. Smaller, lighter engines could handle this sort of traffic and the abundance of cheap labor necessary to keep aging locomotives in top running order only added to the railroads' resolve to withhold future purchases.

It cannot be overlooked that the South, compared to other areas, was economically poor. Conservative fiscal policies were the rule in management because each dollar had to count. This discouraged experimentation and led to very conservative motive power policies on all Southern roads. The experience of World War I was extremely important. It is well known that the Federal government seized the railroads and ran them for the duration under the aegis of the United States Railway Administration, USRA. Less well known yet infinitely more successful was the fact that under the USRA, steam locomotive design was standardized. A committee was formed which put forth a number of designs standardizing locomotives which were to be built. The designs were very good indeed, embodying all of the latest technology and thousands of these locomotives were built and assigned to railroads on an as-needed basis. The South got its share and, in the process, the government unwittingly influenced all future regional purchases until the end of steam. These USRA engines were perfect for the South. They were ideally suited to all of the South's existing topographical, traffic and fiscal conditions; a situation that did not change appreciably until the end of steam.

The Southern Railway

The largest carrier in the South was, and is, the Southern Railway and, by virtue of its sheer size and scope, locomotives of that road tend to define the breed for the region as a whole. Southern was a very conservative line when it came to power eschewing
most modern conveniences and large power in favor of a huge sta-
bility of modestly proportional locomotives. Purchasing its last
new steam power in 1928, Southern managed to weather even the
huge wartime traffic increases with locomotives of essentially
World War I design. The Southern’s coverage was so vast as to en-
compas a tremendous diversity of operating problems from lightly travelled branches to very stiff mountain grades yet they stead-
fastly clung to their conservative power policies. The secret, if
there was one, lay in the fact that the main artery, Washington
D.C. to Atlanta and New Orleans skirted the front range of the
mountains while various other lines fed into this route. What few
larger engines they had were assigned to the more rugged portions
and seldom left them.

Although Southern Railway as the first major railroad to pur-
chase locomotives from Lima Locomotive Works, the overwiev-
ing majority of their engines came from Baldwin and American Lo-
comotive in Richmond. Never one to pioneer, Southern contented
itself with locomotives of proven design and modest proportions.
In one respect, however, they were different. Southern was a great
believer in appliances. Locomotives originally built with clean,
straight lines were subjected to masses of piping as extra pumps,
heaters and generators were added to squeeze every last pound of
usable steam from their boilers. The true glory of the Southern is
that they managed to do this with a style and flair unmatched by
any U.S. railroad. Part of the reason was the basic good looks and
excellent proportions of their locomotives to begin with. Southern
wisely chose not to alter these but made their additions so as to en-
hance, rather than detract from them. Extra pumps and heaters
presented a neat, businesslike and orderly appearance.

But above all, Southern was style bearing close to genius. It
was the little touches that truly made Southern locomotives what
they were. Southern was typically a shiny silver face, white striped
tires, red cab roofs and gold pin-stripping on cylinder, cab sides and
tender. Eagles or candlesticks adorned headlights and locomotives
were kept immaculately clean. Southern also painted many of their
passenger locomotives a light green. At a time when labor was
cheap, Southern was able to field a vast stable of impeccably main-
tained and decorated power at relatively little cost and in so doing set the mark against which all other regional power must be measured.

The Atlantic Coast Line and Seaboard Air Line

These two railroads paralleled one another for virtually all their route miles so there are more than a few reasons to treat their locomotives together. The Coast Line favored American Locomotive while Seaboard tended to Baldwin. Both had absolutely flamed lines south to Florida. Their power reflected this by being mainly of modest proportions. Atlantic Coast Line was a very heavy purchaser of locomotives of the USRA, handsome and well proportioned machines which Atlantic Coast Line found little reason to alter over the years. In 1938, the Coast Line took delivery of 12 huge, thoroughly modern locomotives to speed their heavy Florida-bound limiteds. These locomotives, beautiful and modern in every respect were not entirely successful, however. They were extremely hard on the track probably because the rail simply was not heavy enough to withstand their great weight and pounding rods. They were soon demoted to freight where lower speed eased these problems. The relatively lighter physical plant, the lighter rail of the South was their undoing.

Seaboard never really achieved a look. The general impression of its engines is of shining boilers and oversized domes. Seaboard favored Baldwin as a builder and while Coast Line had drawn heavily on USRA designs, Seaboard used designs of their own. The result was a utilitarian machine, modestly proportioned but without great distinction or the overall harmony of design achieved by Southern or the Coast Line. Seaboard’s principal claim to distinction came from curiously shaped, round-bottomed tenders applied to some of its engines. Seaboard also tended to hang pumps and heaters in such a way as to overpower the already thin boilered engine. Like the Coast Line, the Seaboard ordered 10 high-speed locomotives in 1937. Unlike the Coast Line, these were for freight.

Central of Georgia: Not a typical engine in the South. Heavy, modern, high horsepower, Lima Superpower Locomotive of 1943. Engine 458, 4-8-4, Class K-1, Industry Yard, Atlanta, Photo-W. F. Beckum, Jr.
service and were four cylinder locomotives. Not unexpectedly, the same problems of track deterioration were reported, probably for the same reasons. In 1947, all 10 locomotives were sold to the Baltimore and Ohio where no such problems were encountered on its heavier rail.

The Central of Georgia

The locomotives of the Central of Georgia represent a curious case because though its heart was always in Dixie, its corporation was headquartered in Chicago as a result of control by the Illinois Central Railroad. No where in southern railroading do locomotives less fit the image of a typical Southern locomotive than on the Central of Georgia. Central, for example purchased heavily from Lima and favored heavy, chunky-looking power more reminiscent of Wabash and the Middle West than the South. In all of this they achieved a distinctive look but all too often it is one of ungainliness, angles and, in some cases, downright ugliness. Central discovered rather early on, that dirty locomotives pull just as much as clean ones and maintenance practices tended to reflect that attitude. Power was business-like with a burliness not found in other Southern locomotives. Because of the size of its engines, tenders often had to be made small to fit existing turntables which further unbalanced things. Central of Georgia locomotives typically had wide, flat faces due to large smokebox doors. Heaters of a particularly squarish type rose in front of the smokestack, all but obscuring it. Running boards were up and down affairs and pumps and tanks broke up any semblance of a sleek appearance. Capable and businesslike machines though they were, they had none of the style and elegance associated with the other major Southern carriers.

The Georgia Railroad

A number of railroads could have been selected as being representative of the smaller regional carriers but The Georgia Railroad
has been selected because it so well represents the spirit and the style of the "Southern Locomotive." The Georgia encompassed its main line from Augusta to Atlanta with one major branch to Macon and several short feeder branches. The Georgia was strictly a light-rail line and never owned any locomotives of any size; neither did they have any heavy grades or hills requiring larger power. Never an overwhelming financial success, The Georgia managed to do quite well forwarding freight to and from Atlanta and to the agricultural transportation needs of the area it served. To do this, The Georgia rostered a relatively small number of light but capable locomotives entirely suitable to its needs. All major builders were patronized with Baldwin being the best represented. The typical Georgia Railroad locomotive was a very basic machine with few appliances. Many older engines were rebuilt over the years and consequently upgraded and subsequent rebuildings did nothing to destroy the basic good looks and proportions of these engines. World War I technology was enough to see The Georgia Railroad through until the advent of the diesel. Georgia locomotives were characterized by good proportions though the many rebuildings tended to muddy the original lines of their locomotives. Georgia had a classic front end arrangement, not unlike the Southern Railway, with a high mounted bell, small smokebox door and a headlight mounted dead center. Beautiful, long-pointed pilots or "cow-catchers" were a trademark. No frills, pinstripes or fancy paint adorned the Georgia Railroad power, just good basic honest steam locomotives.

The End of Steam

The South was the first major region of the country to dieselize. This was due in large part to the age of its steam engines most of which were ripe for replacement just when diesels were coming on the market in large numbers. Steam was all but gone from the South by the early 1950s. Other major changes have occurred as well. None of the railroads listed remains as a separate company, mergers and buyouts having taken their toll. The flags have fallen as the fires have been damped for the last time. And yet, on a hot, humid night, you can still hear, just barely perhaps, the lonesome call of a whistle. May it's just the wind...maybe.

Bibliography

Out With the Wagon Trains

by
Ed Milam

Introduction

When one considers the progress made by modern air and air freight travel, he cannot help but realize that we are in a transportation revolution. There is nothing new about it. It started with the founding of our county. When people wanted to go from one place to another, they accepted the method of travel then being used. Horseback, wagons drawn by draft animals, canal barges, and wagon trains. Each person directly involved with that mode of transportation thought his method would not be replaced. However, we see history speaks for its self.

When I started my career with the railroad we were in the middle of the transition from steam power to diesel power. It was a problem for some of the engineers that what they had spent their lives learning was to take such a large change. For instance: a steam locomotive is capable of delivering rated horsepower from a complete start up to its controlled speed. In another phase the operation was much cleaner, much quieter and had more safety features to be enjoyed and observed. The method of heating passenger trains was completely different. It was like starting a new position and keeping their seniority.

Having been a power lineman for most of my life but having been around the railroads all of my life, I was not a complete stranger. My Grandfather was an engineer over 50 years on the
W&A, later the NC&ST.L. My Father started as a brakeman and worked his way up to an office position, to leave the railroad in the Depression. He started contracting in the electrical business and started the process of serving an apprenticeship at about the age of 6. After crawling under houses and working in hot attics, I turned my steps to line work. This I enjoyed for a period of years until I was involved in an explosion of a switchboard. Then I became a third generation railroader. I will try to present some of the changes I saw in my 32 year career as an electrician and a roundhouse foreman (becoming a diesel supervisor when the company started tearing down the circular engine stalls built around a turn table but with the same salary as a roundhouse foreman).

Ed Milam
Macon, Georgia

Locomotives & Changes

The whole concept of going from steam to diesel power was enough to confuse the best of the employees in the mechanical department. There was a marked difference in the number of employees and their crafts needed to inspect, repair, and maintain the "new iron horse." The number of pipefitters and mechanics of the machinist crafts remained about the same with the exception of the Machinist Helpers. There was not a demand for the number of helpers to help a single machinist as had been in the past ("rod gangs" were not needed and the difference in the weight of the parts was not so great. Things that needed several helpers to handle were more exposed and cranes could be used.) There was a demand for more electricians and crane operators (from the electrical craft). I was the only employee to go to work on 5 March, 1949, the same day 43 boilermakers and helpers were furloughed. Departments were retooled and new equipment was brought in At Peogram Shop, located in Atlanta, Georgia, the old boiler shop was converted into the Atlanta Motor and Relay Shop.

The locomotives were of all together a different kind. Where a steam locomotive had to be kept "fired up" for "call time," a diesel locomotive only had to be "blown out" (to be sure that no rain or cooling water was on the pistons), cranked up, and tested out. On a steam locomotive one had to "coal, sand it, and water it" beside keeping steam up to desired pressure. On a diesel, it was like a service station. The fuel oil could be filling the side tanks (with an automatic shut-off on the nozzle while the man doing the servicing was filling the steam generator tank with water and sanding the locomotive). Both steam and diesels need sand to apply to the tracks to increase traction. Some people have the idea that a diesel is like a truck. The engine is geared directly to the wheels. That is wrong. The engine turns a generator which supplies electric power to traction motors (geared directly to the wheels).

The air brakes were very much the same. Some of the brake valves changed shape but the principle remained the same. The locomotive has brakes operated independently of the train brake; however, the automatic brake (train brake) will actuate the engine brakes. The public has never really understood the operation of air brakes on a train. Some of the motoring public think that a train running 60 m.p.h. should be stopped as quickly and easily as stopping a wheel barrow--just drop the handle and it stops. The only problem is ones who go through the experience of meeting a train on a crossing are usually buried. The ones that live through it find that the locomotive engineer is not whistling just to keep his courage up.

Another modern improvement was the radio. Radios started appearing in the locomotive cabs in the early 1950s. As the base stations were established and the number of increased, the use of the radios became more popular with the crewmen. At the earliest times, when an order was needed to be "put out" to a train on line of road, the engine would stop his train at a wayside telephone and copy the order by phone. Later the company and unions negotiated the issue until orders were copied "via radio" and so noted on the order. At the time the radios appeared in the cabs there were also "walkie-talkies" being issued to the trainmen making it possible to communicate between the train and the "head end" or caboose. This saved the brakeman many a step. Also "train to
train" communication was helpful when a member of a crew saw something wrong with the passing train. This could be a stick brake, dragging equipment, hot wheel, or anything that would cause danger a safe operation. Little did we know at that time that the clack-clack of the wheels running over rail joints and the rail was just one length long and the joints were staggered.

Another change was the method of clearing up wrecks and derailments. The old method was to suspend all of the operations or re-route trains over foreign (railroads under different ownership starting at the same terminal and going to the same destination but over a different route) lines and go to the site of the trouble with the wrecker (Big Hook)--should it be a major wreck, it would be the practice to bring a hook in on each end of the solid track. (Most railroads kept a derrick, manned by men of the Carman Craft, at each division headquarters.) Then each crew would start cleaning up the wreck. As soon as the right of way was clear enough for the track crews to repair the track, the schedule would be continued with the wrecks moving to the nearest side track. When the dispatcher could give them working time between trains, the work would be resumed. This was a disadvantage to everyone. When a derrick crew had to clear up for a train that was a lot of work. The outriggers had to be put back in place (one outrigger at each corner of the derrick)--the blocks could be left in place to respot on, all equipment had to be clear of the track, and all of the derrick train had to be towed to and put into a side track. All of this was time consuming. Then someone had the idea to carry some track with the hook. This caught on. Each derrick had from two to six panel cars assigned to it. In this car were six panels—a panel being 31' of rails attached to the crossties with angle bars plus bolts on one end. When the wrecker train arrived at the scene, they started laying a track around the wreck. This enabled trains to pass and allowed the big hook to get nearer the wrecked cars. At any time there was a derailment, car overturned or anything that caused the main line to be blocked, the derrick was dispatched to the scene. Many times the derrick would be called and sent toward the unhappy event knowing that it would be turned back before getting even near the derailment.

Changes in the Roadway Department

In my early years as a school boy and "growing up," I knew and played ball with several of the boys whose fathers were called "section hands." At that time the maintenance of the rails, roadway and bridges was performed by a "section gang." Each gang maintained so many miles of railroad. The number of miles worked determined the number of men in that group. They lived in houses grouped together, somewhere on the section that they maintained. Each gang had a foreman in charge who reported to Roadmaster. When a gang had a project that was considered too big for them, the gang on the next section would come in and help. They usually "swapped work." Each section foreman would keep account of the number of days "borrowed" and when called upon would "pay back" the time he owed. The life of a section man was all outdoors. They would "pack ballast" (using large "seed forks") but a lot of the while, they would be looking at angle bars, tie plates, crossties, bonding wires and anything else that could develop into trouble.

Then came the ribbon rail. This was a new process of building railroads. The rail, instead of being in sections, was in one piece, 7.2 miles long and was hauled on special trains. Every time a full load of ribbon left our plant at Inman Yards, Georgia, the load had enough ribbons to lay 7.2 miles of rail. (That was a total of 14.4 miles of ribbons.) The ribbon would be pulled from the car by a special device. The ribbons would lie beside the track until the old rail was removed to be loaded onto the rail train and either sent back to Inman or hauled to a yard or a section of track to be replaced by relay rail. The new method had lots of bugs to be correct. For example, a section was placed at Elko, on the GS&P. One hot afternoon the rail expanded and crawled almost 6 feet. In the old days there was a nail used as a gauge to allow for expansion. That was when you got the idea to carry some track with the hook. This caught on. Each derrick had from two to six panel cars assigned to it. In this car were six panels—a panel being 31' of rails attached to the crossties with angle bars plus bolts on one end. When the wrecker train arrived at the scene, they started laying a track around the wreck. This enabled trains to pass and allowed the big hook to get nearer the wrecked cars. At any time there was a derailment, car overturned or anything that caused the main line to be blocked, the derrick was dispatched to the scene. Many times the derrick would be called and sent toward the unhappy event knowing that it would be turned back before getting even near the derailment.
Station and Depots

Stations and depots came in all sizes and shapes. Some were just large enough for an operator-agent, small waiting room, stove and a coffee pot for cold weather. Others were large enough to contain a football field, dining rooms, division offices, barber shops, showers and waiting rooms. One thing was common to all of them. Here many remains arrived to be met by a sorrowful family. Here returning servicemen were met by happier groups and from the same place lots of servicemen left their loved ones to be gone for a long period of time maybe not to return. The smaller depots were my favorite. You could walk in and hear the clatter of the telegraph. This alone was enough to interest the boys (both long and tall as well as the younger ones.) An operator told me one time that the trick was not listening to the dots and dashes, but to the silence between each symbol. The small town depot was the social center. Here the families came, on Sunday afternoon, to meet the trains. Not that they were expecting anyone but to see who had been where. Also depots were noted for a place to find the night policeman, a doctor, to leave messages, or just to kill time. Sometimes people would want to buy tickets, get information on trains, pick up LCL (less than car load lots) freight, and to leave on a train.

Jump Yards

This was one of the biggest changes that I saw. In the days of flat switching, a freight train would arrive and would have to be switched according to the destination of each car. The locomotives would cut off and go to the locomotive terminal, the caboose would be removed from the rear and put in the cab track. Then a switch engine would start to work on each end of the remaining consist. Some cars would remain at the point to be unloaded locally. Others would be classified according to destination or at least in groups for the next receiving yard. During this process there was quite a bit of rough handling and damage. This switching would consist of pulling a series of cars out of a track. The switchmen would start lining switches and kicking cars into the tracks that were to contain the block of cars going together. The switch engine would have to shove pretty fast to get the cars rolling and some times the switchman would have to run to pull the pin at the correct time. The correct time was when the slack would start to run out. (The car, or cars, to be disconnected from the group would be traveling faster than the engine was pushing and there would be slack enough for the cut lever to be pulled, thus allowing the knuckles in the couplers to disengage. The free car would then roll until it coupled to another car or until it stopped rolling.

Then came the Hump Yard with all of the computers and the modern equipment. The yard was divided into three classifications: receiving yard, local yard, and forwarding yard. There was a mound built in approximately the center of Brosnan Yard about 25' high. (The following number of tracks are the number in Brosnan Yard in Macon, Georgia--Coastal Division--Southern Railway System--Now Norfolk and Southern). The trackage was laid out as follows: 5 groups with 10 tracks to the group with 50 total for the Classification Yard. These tracks were fed at the South and from the hump. There were a group of retarders in each track to control the speed of the cars as they rolled down the incline. These retarders were controlled by a computer. This computer received the wind speed, humidity, and the temperature and controlled the amount of friction to apply to the wheels of the rolling cars as to control the speed at coupling. This was a new high-tech method of controlling the amount of damage to the contents of the cars. Now, back to the top of the hump. At the top there was a main tower. This building contained the offices of the Division Officers who controlled the receiving switching, and getting the trains ready to hit the high rail. There was in the tower a Terminal Trainmaster who supervised the operation of transportation's part of receiving, switching and forwarding the cars as they arrived. A Yardmaster was at his side who served as a second pair of eyes. In the lower floors were clerks, operators, radio shop employees and the terminal superintendent. In a small one-story building was the hump conductor. He received a consist of the train that was going
into the receiving yard, fresh off the main line. He was in charge of the train, the caboose is the first part of the train and South-
bound it is the last. There are two consists of two each locomotives

Let us yard the train before we continue on the hump. Eight switching engines made up Brosnan Yard, where the inbound trains are. There is a Yardmaster in the North Tower. He is over the pullback rived. The locomotives cut off their trains and went back to the comotive terminal to be inspected, repaired and to be serviced. Main Tower. He instructs the conductors, or some time called

After fueling, sending, inspection, repairing, if need, they will be dispatched. A hump job consisting of a special slug also the sequence to pull them. The cars are classified in blocks-

wired switch engine, then a slug (a unit built on a chassis with a single locomotive engine on each end furnish the power for the slug). Then the blocks for Jacksonville (FEC, ACL, Seaboard and South-

replaces the power that pulled the train into the yard. The engine work the proper). Then the blocks for Valdosta, then the blocks for Cor-

the switch consist couples to the train, pulls against it to see the edle (seldom ever unless there is a hot car for Cordele. That and it is in one piece, cuts in his radio control equipment and notifies cars to be placed at smaller points will be pulled by the local—not a car inspector that he is ready. If the Air Bleeders have bled the air off (through connection). If the train is to go East or North, the blocks will be assembled and the last pull will go to the cab track for a comptive starts over. The train will start moving toward the hump. When the trains are all complete they are set in the forward-

at 7 m.p.h. When the caboose arrives at the hump there are 2 car-

inspectors in place to look the train by. They are located in pit,

interconnected by radio. One of the air bleeders has a switch list and as the cars move he disconnects them.

The hump conductor is sitting in front of a computer, into which he codes the destination of the car (he can put 3 codes into the computer and the code will be executed as they appear on the screen in the rotation they were entered). The caboose, first car to cross the hump has been inspected and disconnected. It will roll down the hump and through the retarders, into the proper group through more retarders, and will wind up in the cab track to be supplied, cleaned and repaired. This will make it ready for the next trip.

Now let us go to the North end of the yard where the trains are built. If a train is going to Atlanta, Savannah, Augusta, or a local to Gordon, Eatonton or Tennille, it will be considered north or east. If it is to go south or west it is considered south. On North
Radio Trains

If you have ever noticed a train pass with 3-4 locomotives what seems to be the head end and later discover that there are more locomotives in the consist that sound like they are working they are. The Southern Railway developed the Radio Train. The method of moving freight is usually found on unit trains. This means that the entire train is consigned to a single customer. A common customer is the Georgia Power Company's Plant Harlee located on Lake Sinclair near Milledgeville. There is a 93 car train with 7 units of power, 1 radio control car and 2 cabooses so the leading units can be coupled to either end and have a cab on the rear. The leading unit must have the transmitting and receiving equipment that is not standard in a regular unit. It is designated a white face. This means that the locomotive numbers are black color on a white background in the number lights placed on each side of both the front and rear of the locomotive with lights behind the numbers for night use. Where a number light is noted to be white numbers on a black background, it is not equipped to be a radio control unit.

Back in the train you will find a receiver car. This looks like a box car only it has a control cable (27 x 27) and a battery cable (22) to furnish power to the control car. Any time that the control car needs to be de-activated, all that is necessary is to remove the wire cable. This can be done without having to enter the car. The control cars are designated by a number beginning with 90 and followed by a 59 plus 2 other digits—example 905915, this being one of the unit coal trains' control cars. The advantages of having locomotives in the train are many: The brakes can be activated in shorter lapse of time (both applied and released), the train line brake pressure will be 90 pounds instead of 75 pounds and can be built up from within the train—going both ways instead of having to travel from the locomotives on the head end to the rear, the radio units can be isolated and the power on the head end can do all of the pulling, upon starting the power in the consist will help make a smoother start, in case of a crossing accident the controlled units can be cut loose from the car, the train separated by using the radio consist to move any part of the train that might hamper rescue operations. The disadvantage of the radio train, taking the union's side, is it cuts down on the number of men that it takes to move that much tonnage. There is no doubt about it, the radio train has made advances in railroading since the early days of the steam engines when a standard train was 12 cars at night and 15 cars in the day time. It has advanced safety from the early days when a brakeman was a brakeman. He had to either walk from the cab toward the locomotive (or the head brakeman had to start at the locomotive walking toward the cab) tightening hand brakes on each car. This was done because the brakes could not slow the train down alone. Just when the speed suited the engineer, it would be blow the brakes off (by whistle signals) and the brakemen would have to unwind the brakes that they had wound up. Since the days of hand brakes being used on the line of road have passed, the running boards on the top of the cars and the ladders, going up the sides of the cars, have been removed. The hand brake is still on the car but is used only when the car is left and the brake is tied up to keep the car from rolling off. This alone has saved many lives and the loss of many limbs.

The Radio Caboose

The Association of American Railroads are in the process (and have succeeded in some cases) to replace the little red caboose with a device not human. It is an electronic device that is battery powered that monitors the air pressure on the train line rear hose. It sends a radio signal to a transmitter (within the device) that sends a radio signal to a receiver on the controlling unit. It will sense a leak when the train line pressure drops, when the train becomes uncoupled, or when the pressure is in operating limits. This item may keep the air pressure monitored more closely than human eyes could, but it will not see any accidents that happen to the
side of the train, unless the train is uncoupled and goes into emergency. It has both pros and cons. I will wind this up with a poem that I wrote about the caboose.

Caboose '84 Model

Railroads were made up of men, equipment and steam,
To be a part of it was each young boy's dream.
To watch a train pass, they would run or even race,
Now they seldom bother to just turn their face.
You can remember when at the sound of a train, people came in flocks,
Now they don't, cause nobody gets a wave from the little square box.
The red caboose was the last car on the train,
Shelter for the Conductor from the cold and the rain.
Some "Train Captains" were nice, others were mean,
Kept the Flagman out until his boots were wiped clean.
Then with his cap in his hand, he sat in a seat on the side,
Keeping a watchful eye out the window, what a ride.
Fighting "Slack In" and "Slack Out" for miles after miles,
Always ready to wave and make with a friendly smile.
Now "The Boxes" are there and not asking for vacations, How can the company use them at their many investigations?
The boxes are there, can't complain, hide, nor shirk, If they keep improving things, soon nothing will work.

Ed Milam, Retired Diesel Supervisor, Brosnan Yard, Coastal Division—Southern Railway System—Macon, Georgia.

Polly Milam
by Kemp Mabry

E. L. "Polly" Milam was Marietta, Georgia's legendary railroad engineer for 57 years and engineer on the W & A Railway (later the N.C. & St. L) for more than 50 years. Polly Milam could bring the town to a virtual halt by stopping his long train so that all railroad crossings were blocked!

Born the year the War Between the States began, 1861, Polly Milam was later to be fireman on the famous General, the locomotive stolen by Yankee spy James J. Andrews and 19 other raiders at Big Shanty (Kennesaw, Georgia) when Polly was one year old in 1862, provoking the Great Locomotive Chase.

William Fuller was the Southerner who was conductor of the General, first to give chase for the stolen General. The General was housed in the yards at Chattanooga when I first saw it. A historical monument beside the railroad tracks outside Ringgold, Georgia, marks the spot where Andrews gave up the General. Georgia finally retrieved the General from Tennessee under Governor Lester Maddox, as I recall. It is now housed in the Big Shanty Museum at Kennesaw.

Polly Milam also was on the old Texas using it as a switch engine. It was a spent engine and Polly said that he would rather have a pair of mules, whereupon he was given the Georgia engine to use for switching.

Polly Milam was interviewed by Herbert G. Monroe in 1934 for the Sunday issue of an Atlanta newspaper. He told about his experience, now more than 100 years ago, as a young man when he was a brakeman on a little freight train traveling south. As they entered Allatoona Pass, they discovered that their train had broken in two. It was around midnight when the young man was sent back to flag a train which was following them. He had his pistol in...
his right hand and his red and white lanterns in his left hand. He ran back up the hill to flag the oncoming train. The cut was about 60 feet deep and 400 feet long. At the north end of the cut was a soldier's grave. Polly had heard of strange happenings there. He did not want to pass the grave so he stopped in the middle of the cut. His train had coupled up and moved on without him!

In a few minutes he saw something that looked like a man with a sheet thrown over him coming toward him from the north end of the cut. Polly was frozen in place from fright. When the thing came within about 60 feet of him, it sort of slumped down wearily to the railroad ties and sat there as if tired out. Polly spoke to it twice but there was only the echo of his own voice. His lanterns were jingling and his teeth were chattering.

"Then something seemed to shove me toward the thing," said Polly when he reached it, he touched it with the back of his pistol hand. It was cold and still! Instantly Polly was racing down the track more than one and a half miles before the train he was to flag caught up with him! He never knew what the "thing" was.

though a lot of railroad men claimed to have seen "boogers" in the cut. Polly said that he had been worse scared that night than any of the serious wrecks he had during his long career as a railroad man.

SCARBORO: AN HISTORICAL PERSPECTIVE

By Robert Jenkins and Daniel Good

Scarboro is located in Jenkins County and is about five miles southeast of Millen, Georgia, which is the Jenkins county seat. The Ogeechee River flows beside Scarboro and the river becomes swampy just below the town. (Figure 1) The high ground in and around Scarboro provided an excellent location for Indian settlements. With high bluffs and a narrow river at Scarboro, the Indians could cross the Ogeechee River with little trouble. The fertile soil around Scarboro provided for rudimentary farming by the Indians.

Figure 1: This is a map of Scarboro published in 1978. Note how large the legal city is compared to the geographic city.
Later, in the early 1800s, white settlement began. It is important to recognize Scarboro for it once played a vital role as a center for its region. Now the town is hardly more than a few buildings, each filled with memories of the past. This paper looks briefly into the history of Scarboro and attempts to answer a few significant geographical questions pertaining to the town’s impact on the region.

Probably the first family to settle in this region was that of Mr. Hardy Scarborough. He moved into this region in 1834 or 1835. His brother, Enos H. Scarborough, was the first postmaster. The village was soon named Scarboro after these two brothers.

The old Louisville Road then passed at Scarboro and the relatively easy crossing of the Ogeechee River provided for a good trade center. The "Louisville Road" originally connected Savannah with Louisville when Louisville was the Capital of the State of Georgia. The road also paralleled the Ogeechee River and connected with the town of Queensboro at the headwaters of the Ogeechee River. This road was established pursuant to an Act passed by the Colonial Assembly on April 2, 1770. It soon became one of the most important stage and post routes in Georgia. On September 16, 1777, the State Assembly named the first Board of Commissioners for its exclusive maintenance.

Other settlers came into this region in large numbers between 1838 and 1860. Around 1838, a simple bridge was built over the Ogeechee River at Scarboro. This bridge connected roads on both sides of the Ogeechee River and provided much greater accessibility to Scarboro.

Scarborough Post Office was established on September 12, 1839, with Enos H. Scarborough being the first postmaster. He was followed by David H. Wadley, George Hurd, William A. Wright, Mrs. Eliza C. Rabun, and James A. Fulcher, in that order. The name was changed to Scarboro in 1893, with the postmaster serving in the following order: James M. Burns, Charles W. Sharpe, Sidney J. Jackson and Annie D. Burns.

One of the oldest and most important buildings in Scarboro is the Baptist Church. The Church was constituted in 1854 and people still attend worship services there. All of the church records from 1880 to the present are in the church today. Unfortunately, the records from 1854 to 1880 have been lost, with no way to find out who the charter members were.

It is known that the original meeting place of the church was a small log building near the banks of the Ogeechee River. The first minister of record was the Reverend J. M. Cross, who served from 1880 to 1883. One interesting note is that two of the earlier members of the church were Black. One was Jane Newton, who was a member from 1881 to 1890. The Scarboro Baptist Church played a vital role in the early days of the community, both as a place of worship and as a meeting house for important events. While only a few families still attend the church regularly today, it is quite remarkable that Scarboro Baptist Church has lasted this long.

After a few stores, houses and a postal stop were built, Scarboro appeared to be a booming little community. In 1839, the Central Railroad was constructed and Scarboro soon became an important refueling station and shipping point for freight to outlying communities. Scarboro as a shipping point was Station Number Seven (Figure 2), so designated by the railroad. It gradually became a center of mercantile interests, education and social life.

The map shown in Figure 2 was published in 1859. Note that Station No. 7 was Scarboro. Station No. 6 was Ogeechee. Station
No. 8 was Brinsonville, now known as Millen. Notice the distances between each station.

With the completion of the railroad to Scarboro came the importance of Scarboro as a shipping point for its region's agricultural products, chiefly cotton. The region depended on the export of cotton in the 1880's for economic survival. As the South depended on the trade of cotton, so did the town of Scarboro. Truly cotton was King for the town of Scarboro and the people in its region.

Civil War came to the United States in the spring of 1861 and Scarboro was immediately affected. Recruiting for the Confederate Army took place in both Millen and Scarboro. The Central of Georgia Railroad was a vital lifeline for the Confederacy throughout the entire war.

In 1864, war came into Georgia and the Deep South really began to feel and see the horrors of war. In September of 1864, Union General William T. Sherman captured Atlanta and during the late fall of 1864, Sherman marched through Georgia to the coastal port of Savannah. Enroute to Savannah, Sherman destroyed much property and set ablaze many barns and warehouses. Unfortunately, Scarboro was in Sherman's line of march. Although he did not burn any of the houses in Scarboro, his army of 75,000 men did destroy much of the Central of Georgia Railroad and a cotton gin, the abattoir, some warehouses, and the railroad depot. (Figure 3)

General Sherman was with the 17th Corps when it entered Millen on the 2nd of December and camped there overnight. On the 3rd of December, he accompanied General Blair's 17th Corps on the march to Scarboro. They camped just outside of Scarboro, a few hundred yards north of town on the banks of the Ogeechee River. On the 4th of December, they entered Scarboro and destroyed the cotton gin, the railroad depot, and a few warehouses before leaving for Savannah. This was the only major Union army that Scarborough saw during the war, but it was enough for the people of that community to see that the Confederacy was doomed. The very next spring, the Confederacy surrendered and Scarboro, like the rest of the South, underwent Union occupation and Reconstruction.

Unlike much of the South, Scarborough prospered during the years after the war. The agricultural region around Scarborough soon enjoyed prosperity again. Scarborough was changed to Scarboro in 1893. Probably Scarboro's heyday was between 1875 and 1890 when the Central of Georgia Railroad was once again an important rail line for east Georgia. In 1880, the community supported two mercantile houses, that of Fulcher and Heard and that of Williams and Outland. Scarboro could also boast of one of the finest seats of secondary education in that part of the country, the Scarboro Academy. A diploma from this Academy was a thing to prize in the 1880's, and young ladies and gentlemen came from miles around to attend the school.

Outland's store was built in the 1870s. The ground floor housed the business itself but the second story was used as a public hall and ballroom. On a Saturday night this building would typically be seen filled with many belles and blades attending a gay ball. On an evening in 1883, one might see the ferry down by the river bringing to the Scarboro side some of Bulloch County's

Figure 3: This is a map of Scarboro and the surrounding area in December of 1864. Note that on December 3, 1864, General Blair's 17th Corps of Sherman's Army of the Tennessee camped at Scarboro.
finest young men and women. The "Harper" musicians from Savannah often played for these parties. This building still stands and is in use today.

The twentieth century meant despair for Scarboro because the introduction of the automobile and the decline of the use of the railroad helped to seal Scarboro's doom. In 1905, Jenkins County was formed with Millen as the county seat. Scarboro was included in this new county, although it was originally a part of Screven County. This also hurt Scarboro because, as the importance of Millen increased, the importance of Scarboro decreased. Millen and Statesboro, both of which are relatively close to Scarboro, grew during this period while Scarboro became stagnant.

An influential family in Scarboro during the first years of the twentieth century was that of Mr. E. A. Burke. In fact, Burke County was named for his great-grandfather. Mr. E. A. Burke lived in and around Scarboro all of his life and his family made a living by farming. At one time he also operated a warehouse for shipping cotton from Scarboro.

Scarboro is now only a memory of the past, for it serves no real purpose for the area around it. There are only a few old, decaying buildings left where there once was a rich cultural, transportation and trade center. Only a few years remain before there will be nothing at all left at Scarboro but the cemetery. In that cemetery lie the resting bodies that once made Scarboro great. It seems odd that a town located on a river with both roads and a railroad passing through it could die as Scarboro has.

Perhaps someone will try to preserve some of the old buildings and landmarks of this community one day; but for now, Scarboro will remain only a memory of the past. When the last few families remaining in Scarboro die out or move away, Scarboro will be only a memory. Until then, however, the local people will still attend the local Baptist Church and pay a visit to Mr. Hazel Frawley, who still runs the general store for those few families still living around Scarboro.

Photographs of Engineer John David Cannon
from the collection of Evelyn Cannon Darley Mabry

In 1868, because many of Georgia's prisons had been destroyed during the War Between the States, the Georgia General Assembly authorized a Convict Lease System to relieve some of the pressure to house prisoners. From Old Town Plantation in Jefferson County, Georgia, absentee landlords W. W. Simpson and later William D. Grant were involved in leasing convicts to help build railroads and work on the plantation.

By 1888, Thomas Jefferson James and his wife Alice Cheatham James were the resident owners of Old Town, gracious hosts providing lavish entertainment. Old Town became some of the Old South cultural hub of Jefferson County. (It is still a working plantation, older than Louisville, and being restored now to Old South grandeur.)

Captain James, as he was called, later moved to Pinetucky Plantation on the Jefferson-Emanuel County line, using convict labor and operating a 300 horse (more correct 300 mule) farm. He extended the Wadley and Mount Vernon Railroad into Adrian in Emanuel County using convict labor. It is said that Captain James used 1,100 convicts in his farm and lumber business in the 1890s. His land holdings totalled 38,000 acres. (See A History of Saint George Parish by Marion Durden.)

One of the overseers in building the railroads was John David Cannon who was also a locomotive engineer. As the construction of the railroads progress, this necessitated the moving of his family from time to time. At various times, from 1900 to 1914, John David Cannon's family lived in Adrian, Wadley, Kite, Swainsboro, Midville, Orianna, Soperton and Cedar Grove, developing a wide circle of acquaintances and enlarging their outlook for that era.
John David Cannon (1869-1919) in the cab in a sand cut on the Stillmore Air Line Railway. Near Wadley, Georgia. In the cab is Engineer John David Cannon circa 1904-1905. Near Wadley, several young boys were throwing rocks at the engine as it passed one day. Engineer Cannon stopped his train, got down from the cab, ran down the boys and gave them a whipping! Later, one of them, Jesse May (1886-1976), married Pearl Moore (1885-1953), John Cannon’s niece. They lived in Wadley.
Clockwise, beginning upper right: Calvin Yawn, engineer; Walter Cannon, fireman; Ruth Handcock; Fred Layton, conductor. Walter Cannon (1906-1976) was the last in this railroad family. His last job was as representative of the Brotherhood of Railroad Locomotive Engineers. His brother, J. D. Cannon, Jr., died in 1960. He had been a railroad lineman for many years.

John David Cannon's train at Wadley, Georgia. Once at Adrian, Georgia, Mattie Cannon (Darley), as a small child became sick. Her father, John Cannon, fired up the boiler and raced his engine into Swainsboro to fetch the doctor for his sick child. As a 14 year old boy in Wadley, John Cannon was sent with lunch for his older brother Conductor Spias Cannon. He arrived to see him cut in two when engine and car came together also bending Spias' pistol. At home the violin fell off the sofa and shortly the distress whistle blew. It was Spias' twenty-sixth birthday.
My original intention had been to include here just a brief description of each railroad shown on the accompanying map, but when I read the story of the construction of the first railroad in South Carolina, I was so impressed that I thought some of my readers might appreciate a few specific details.

I was amazed that a group of merchants and business men, most of whom had never seen a railroad before, would have the courage and ingenuity to construct what was, in its day, the longest railroad in the world!

SOUTH CAROLINA CANAL & RAILROAD COMPANY

The first railroad in South Carolina was conceived during the 1820s while steam engines were still in the experimental stage.

It was a daring venture, spearheaded by Charleston business men and merchants who, by an act of the South Carolina legislature on December 19, 1827, were authorized to set up The South Carolina Canal and Railroad Company. One of the conditions of the Act specified that when the subscription of stock amounted to or above one-half the authorized capital of $7000,000, the Company was to be considered formed.

Books for the subscription were opened on March 17, 1828 at Columbia, Camden, Hamburg and Charleston. Upon closing the books at the end of the four days, it was found that no shares were taken at Columbia, Hamburg. At Charleston, however, $350,000 was subscribed, the condition of the Charter was satisfied, and a
formal organization was set up.

The Board of Directors then had the responsibility for constructing a new mode of transportation in a new country, with little knowledge of the details involved, and with scarcely any experienced talent they could employ.

The Route

Several Surveys of possible routes were made. Finally, on April 25, 1831, Horatio Allen, chief engineer for the project, decided on a route from Charleston to Hamburg via Aiken, covering a distance of about 135 miles.

Construction Begun

Although beset by many difficulties, the work progress, right of way were purchased, the form of construction for the roadbed begun, and actual construction began January 9, 1830.

Locomotive Built

On March 1, 1830, the Board of Directors authorized the construction of a steam locomotive to provide the motive power for the new railroad. The engine was built during the summer of 1830 at the West Point Foundry in New York City.

Locomotive Placed in Operation

The locomotive arrived in Charleston on the ship Niagara on October 23, 1830. Local machinists were hired to put the machine together and prepare it for the road. On November 2, 1830, with Nicholas Darrell as engineer, a trial trip of the Best Friend of Charleston (as the locomotive was called) revealed that the wheels were too weak for the strains placed on them by the curves in the road, and they had to be replaced.

First Passengers Carried

On December 14 and 15, 1830, after the replacement was made, the engine was tried again, carrying some forty or fifty passengers in four or five cars at speed of 16 to 21 miles an hour! On December 24, 1830, the first timetable was published in the Charleston Mercury, and the formal debut was made on Christmas Day, 1830, by hauling 141 persons. These early trips ended at the forks of State and Dorchester Roads.

Road Extended Westward

Only six miles of the road were actually completed by the end of 1830. By May 1831, 65 miles from Charleston to the Edisto River were under contract, and beyond the Edisto, 34 of the total 70 miles were also under contract.

During 1831, the whole line was placed under contract and the work progressed with all possible speed. In May 1832, 15 miles of the road were actually in operation from Charleston to Woodstock, carrying both mail and passengers. The road was opened to Branchville on November 7, 1832, a distance of 62 miles and on February 7, 1833, 72 miles were in operation to Midway.
Road Completed

On October 3, 1831, the South Carolina Rail Road was opened to traffic. The Governor of South Carolina and his party were transported to Aiken, 120 miles from Charleston, arriving at 5 p.m. The car with the Augusta (Georgia) mail and passengers was let down the inclined plane and arrived at Hamburg about 8 p.m., having travelled 136 miles in approximately 14 hours.

At the time of its completion, the South Carolina Rail Road was the longest railroad in the world, and twice as long as any other in America.

The total cost of the road was $951,148.36, or $6,993.74 for every mile of road constructed.

Carrying the Mails

As the railroad was in 1833 upon completion of the line from Charleston to Hamburg.

From a map of the Carolinas and Georgia, 1833

The Charleston Courier, in various issues during November and December, 1831, reports that the locomotive was being used to carry the mails. In a statement to the Board of Directors in May, 1832, it was reported that income from carrying the mails was $483.34. However, in November 1835, the Post Office Department refused to pay the company for carrying the mails, claiming that no legal contract existed; consequently the service was discontinued on December 1, 1835.

In the latter part of 1836, an arrangement was made by which...
the mails were to be carried from Charleston to Hamburg for $10,000 a year. This did not prove satisfactory to the company, and in 1838, the time for making another contract, the company demanded $20,000 a year. The Post Office Department refused. Eventually, on May 20, 1839, a four year contract, paying the company $200.00 a mile or approximately $27,600 a year, was executed.

The Louisville Cincinatti & Charleston Rail Road

On December 19, 1835, the South Carolina legislature passed an act chartering the Cincinatti & Charleston Railroad Company. To obtain the agreement of the Kentucky legislature, certain changes were required, including a name change to Louisville, Cincinatti & Charleston Rail Road Company.

On December 28, 1837, the Louisville, Cincinatti & Charleston Rail Road purchased the stock of the South Carolina Canal & Rail Road Company. The financial panic of 1837 and failure of the states of Kentucky, Tennessee and North Carolina to purchase sufficient shares in the new railroad, stopped plans for building across the mountains. Money paid by subscribers in Kentucky, Tennessee and North Carolina was returned, and all efforts centered on completing a line from Branchville to Columbia.

Contracts were let early in 1838 for preparing the roadbed. By September, 1839, all of the road had been put under contract. The line was completed in 1842. Passenger trains entered Columbia on June 20, 1842, and freight trains on July 1, 1842. Total cost of constructing the road was $2,274,906.21.

Formation of South Carolina Rail Road

By an Act of the South Carolina legislature, approved December 19, 1842, the Louisville, Cincinatti & Charleston Rail Road and the South Carolina Canal & Rail Road Company were merged into a new corporation called the South Carolina Rail Road Company.

Expansion to Camden

About the time that the Branchville-Columbia road was completed, a movement was begun to connect this road with Camden. The citizens of Camden prevailed upon the South Carolina Rail Road Company, successor to the Louisville, Cincinatti and Charleston Railroad Company, to build the branch, and construction was begun in 1845.

Great difficulty was experienced in building the four miles of necessary trestle work in the Wateree swamp. This, together with the frequent flooding of the swamp areas, caused many delays. Statesburg was reached on May 31, 1848 and on November 1, 1848, the railroad finally reached Camden. This line connected with the Branchville-Columbia line at Kingville. Fare to Columbia was three dollars and twenty-five cents.

Wilmington & Manchester Rail Road

This railroad extended from Wilmington, North Carolina through Marion and Florence, South Carolina, a station on the Camden branch of the South Carolina Rail Road. Construction work was begun on this line in 1850 and completed in 1853. Length of the road was 158 miles. Wilmington, North Carolina, and Charleston, South Carolina, were now connected by rail.

Greenville & Columbia Rail Road

In 1846, the Greenville & Columbia Rail Road Company was chartered to build a road from Columbia to Greenville. After much jockeying with local interests as to the towns through which the road was to pass, track laying was begun from the Columbia end in 1849. Newberry was reached in March, 1852, Greenwood in
July, 1852, Anderson in June, 1853 and Greenville in December, 1853.

Laurens Rail Road Company

The Laurens Rail Road Company was chartered in 1852 and by 1855 had completed the 32 miles of road from Laurens to Newberry, where it joined with the Greenville & Columbia line.

Blue Ridge Rail Road Company

The Blue Ridge Rail Road Company was chartered in 1852 to supply the 150 missing miles of road between the Greenville & Columbia Rail Road and the city of Knoxville, Tennessee, and connect the city of Charleston with the golden West. In July, 1853, this road started from Belton, on the Greenville & Columbia Rail Road and built westward, while the major resources of the company were engaged in the construction of tunnels in Georgia and the mountains of northwest South Carolina. By 1856, trains were running to Pendleton, and by 1857, they reached West Union, a distance of about 43 miles.

Meanwhile, about 1,000 laborers were cutting a tunnel into Stumphouse Mountain, through which trains would have to pass to reach Georgia. A shanty town called Tunnel Hill had been established there for the workmen and their families. A post office was established at Tunnel Hill on December 7, 1853. More than a half mile of tunnel had been cut into the mountain, using only hand tools and blasting powder (dynamite had not yet been invented) when the work was halted for lack of funds.

The line was not extended into Walhalla until after the war.
Spartanburg & Union Rail Road Company

The Spartanburg and Union Rail Road Company was chartered in 1847. It built a line 60 miles in length from Spartanburg through Union to Alston, where it connected with the Greenville & Columbus Rail Road. The first train to reach Spartanburg was p.m. on November 25, 1859. A great railroad barbecue was held to celebrate the event.

Charlotte & South Carolina Rail Road

The Charlotte & South Carolina was chartered in 1846, with the original purpose of building a road from Charlotte, North Carolina, to Camden, South Carolina. However, because of the large subscription of stock taken by Columbia, the southern terminus was placed at that point, instead of Camden. Work began at the Columbia end and by October, 1850, 30 miles of road had been completed. In November, 1852, Charlotte was reached. Three years later, in 1855, a road was built from York to Chester to connect with this Columbia to Charlotte line.

Cheraw & Darlington Rail Road

The Cheraw & Darlington Rail Road Company was chartered by an Act of the South Carolina Legislature in December, 1852. By 1855, the entire 38 miles length had been graded, and the road was completed about November 1855. First trains began operating early in 1856.

North Eastern Rail Road Company

The North Eastern Rail Road Company of South Carolina was chartered in February, 1852. The route surveyed began at the South Carolina Rail Road, near the six mile house, and continued in a nearly straight line to its terminus at the Wilmington & Manchester Rail Road, 2 miles east of James Station, on the land of Samuel O. McCown, Esq., in Darlington District, he having given the Company five acres of land for that purpose.

Construction began in 1855, and by December, 1856, trains were in daily operation, conveying freight and passengers to and from the Santee River, a distance of 49 miles.

While work progressed on a bridge over the Santee, the remaining 53 miles of road to Florence were being built, and late in 1857, the 102 miles were opened to traffic between Charleston and Florence.

In February, 1865, this railroad was used to evacuate General Harlee's troops from Charleston.

Charleston & Savannah Rail Road

The Charleston and Savannah Rail Road Company received a charter from the South Carolina Legislature on December 20, 1853, and on February 18, 1854, from the Georgia Legislature.

In June, 1855, the report of the Chief Engineer, locating the road from the Ashley River to the Savannah River was accepted.

Great difficulty was found in constructing the road, and to avoid lowland swamps and the broad estuaries of several rivers, the tracks extended 100 miles from St. Andrews, South Carolina, on the south bank of the Ashley River, opposite Charleston, to Central Junction, Georgia. From that point, the tracks of the Central Rail Road and Banking Company (of Georgia) were used for the remaining five miles to Savannah.

The road was completed in 1860, using a ferry to cross the Ashley River into Charleston. In 1861 a bridge was constructed over the Ashley River that joined the tracks of the Charleston & Savannah Rail Road with the other railroad entering Charleston.
Footnotes

1By comparison, the first passenger train on the Camden & Amboy Rail Road was drawn by horses and began operation over a 34 miles track on December 17, 1832.

2The mails were first transported by special mail train on the Camden & Amboy Rail Road on December 29, 1834. (per "Annals of Camden" by Charles S. Boyer)

Bibliography

Centennial History of South Carolina Railroad, by Samuel Malanchthon Derrick (1939)

Columbia, Capital City of South Carolina 1786-1936, edited by Helen Kohn Hannig (1936)

Atlantic Coast Line Railroad, by Richard E. Prince (1966)

Report of the President and Directors of the Cheraw & Darlington Railroad Company, November 18, 1856

Various Reports to Stockholders of North Eastern Rail Road

Various Reports to Stockholders of Charleston & Savannah Rail Road
Footnotes

By comparison, the first passenger train on the Carolina
Railroad was drawn by horses and began operations on
December 17, 1822.

The mail was first transported by special mail trains on
the Charleston & Camden Railroad on December 29, 1824. (see "Se",
"Cincinnati & Chicago Railway" by Charles H. Rogers)

Bibliography

Commercial History of South Carolina Railroad, by Samuel
Anderson Beall (1907)

Columbia, Capital City of South Carolina 1670-1936, authors
Peden, Julian Beatty, (1936)

Atlantic Coast Line Railroad, by W. C. F. Felton (1960)

Trains of the Atlantic Railroad, 1828-1860, by Hamil
Macaulay (1927)

Report of the President and Directors of the Charleston & Harris
Railroad Company, November 19, 1830

Various Reports to Stockholders of North Eastern Rail
Road

Various Reports to Stockholders of Charleston & Savannah
Railway

Layout, Design and Typesetting

by

Newsletters, etcetera

2715 Chestnut Ridge Way

Marietta, GA 30062

404 565-2474