Color Tuning of \((K_{1-x}Na_x)SrPO_4:0.005\text{Eu}^{2+},\ y\text{Tb}^{3+}\) Blue-Emitting Phosphors \textit{via} Crystal Field Modulation and Energy Transfer

Pengpeng Dai
\textit{Northeast Normal University}

Xintong Zhang
\textit{Northeast Normal University}

Lulu Bian
\textit{Northeast Normal University}

Shan Lu
\textit{Northeast Normal University}

Yichun Liu
\textit{Northeast Normal University}

\textit{See next page for additional authors}

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/physics-facpubs

Part of the \textit{Physics Commons}

Recommended Citation
Dai, Pengpeng, Xintong Zhang, Lulu Bian, Shan Lu, Yichun Liu, Xiao-Jun Wang. 2013. 'Color Tuning of \((K_{1-x}Na_x)SrPO_4:0.005\text{Eu}^{2+},\ y\text{Tb}^{3+}\) Blue-Emitting Phosphors \textit{via} Crystal Field Modulation and Energy Transfer.' \textit{Journal of Materials Chemistry C}, 1 (30): 4570-4576. doi: 10.1039/C3TC30128A
https://digitalcommons.georgiasouthern.edu/physics-facpubs/40

This article is brought to you for free and open access by the Department of Physics at Digital Commons@Georgia Southern. It has been accepted for inclusion in Physics Faculty Publications by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Authors
Pengpeng Dai, Xintong Zhang, Lulu Bian, Shan Lu, Yichun Liu, and Xiao-Jun Wang
Color tuning of \((K_{1-x}\text{Na}_x)\text{SrPO}_4:0.005\text{Eu}^{2+}, y\text{Tb}^{3+}\) blue-emitting phosphors via crystal field modulation and energy transfer†

Pengpeng Dai,a Xintong Zhang,*a Lulu Bian,a Shan Lu,a Yichun Liu*a and Xiaojun Wang*b

Two series of \(K_{1-x}\text{Na}_x\text{SrPO}_4:0.005\text{Eu}^{2+}\) and \(K_{0.4}\text{Na}_0.6\text{Sr}_{0.995}\text{PO}_4:0.005\text{Eu}^{2+}, y\text{Tb}^{3+}\) phosphors are synthesized via a high-temperature solid-state reaction. Their emission color can be tuned from deep blue to blue–green by modulating the crystal field strength and energy transfer. Partial substitution of \(K^+\) with \(\text{Na}^+\) results in a contraction and distortion of the unit cell of the \(K_{1-x}\text{Na}_x\text{Sr}_{0.995}\text{PO}_4:0.005\text{Eu}^{2+}\) host, tuning the emission from 426 to 498 nm. The red-shifted emission is attributed to an increased crystal field splitting for \(\text{Eu}^{2+}\) in a lowered symmetry crystal field. The tunable emission is further demonstrated in the cathodoluminescence spectra, which indicates that the luminescence distribution of the \(K_{1-x}\text{Na}_x\text{Sr}_{0.995}\text{PO}_4:0.005\text{Eu}^{2+}\) phosphor is very homogenous. Additionally, utilizing the principle of energy transfer, the emission color can be further tuned by co-doping with \(\text{Tb}^{3+}\). The chromaticity coordinates for the co-doped phosphor, \(K_{0.4}\text{Na}_0.6\text{Sr}_{0.995}\text{PO}_4:0.005\text{Eu}^{2+}, y\text{Tb}^{3+}\), can be adjusted from (0.202, 0.406) for \(y = 0\) to (0.232, 0.420) for \(y = 0.09\). The energy transfer processes from the sensitizer \((\text{Eu}^{2+})\) to the activator \((\text{Tb}^{3+})\) are studied and demonstrated to have a resonance-type dipole–dipole interaction mechanism, with the critical distance of the energy transfer calculated to be 12.46 Å using a concentration quenching method.

Introduction

The trend towards energy saving technologies in the lighting industry together with regulatory or legal initiatives has put the end of the incandescent lamp in sight and given another push for more widespread use of white light-emitting diodes (WLEDs).1 WLEDs fabricated with tricolor phosphors and near ultraviolet light-emitting diodes (NUVLEDs) are considered to be very promising for the realization of high-quality light sources because of their higher color rendering index (CRI) and homogeneous color distribution in comparison to current commercial WLEDs.2 LED phosphors are generally required to have a high conversion efficiency, excellent chemical stability and high thermal quenching temperatures.3–5 In addition, they are also expected to have a tunable emission color,4 allowing WLED designers to have greater flexibility in choosing the emission wavelength and gain an improvement either in the correlated color temperature or CRI of WLEDs and for phosphor applications in NUVLEDs.6

Recently, ABPO4-type phosphate compounds (where A and B are mono and divalent cations, respectively) acting as host materials for phosphors have drawn an increasing amount of attention due to their excellent thermal, chemical and hydrolytic stabilities.6,7 Additionally, the variety of the structures in these compounds makes it possible to finely tune the physical/chemical properties to design new materials.6–8 KSrPO4 is one of the most important members of the phosphate compounds. For example, KSrPO4:Eu2+ blue-emitting phosphors show better thermal stability than the currently available YAG phosphor at high temperatures (~225 °C) and are considered to be potential blue-emitting phosphors for WLEDs.6 More recent works have been done on KSrPO4:Eu2+ phosphors, describing both their crystal structure and optical properties.6,8 However, the emission from these phosphors is too blue (~426 nm) to create a suitable white light. In this paper, we present two strategies for tuning the emission color of a KSrPO4:Eu2+ phosphor by: (1) introducing a foreign cation, Na+, to modify the crystal field strength acting upon the Eu2+ activators and (2) introducing a co-doping activator, Tb3+, into the host lattice to promote an energy transfer from Eu2+ to Tb3+. The emitting color can be tuned from 426 to 498 nm using strategy (1) and the wavelength can be further extended...
to 545 nm using strategy (2). The modification of the crystal field is discussed in detail with regard to the crystal structure changes, photoluminescence excitation, lifetime decay, cathodoluminescence (CL) and micro CL mapping. The resonance-type energy transfer from Eu\(^{2+}\) to Tb\(^{3+}\) ions in the K\(_{0.4}\)Na\(_{0.6}\)Sr\(_{0.995}\)PO\(_{4}:0.005\)Eu\(^{2+}\), Yb\(^{3+}\) phosphor is demonstrated to have a dipole–dipole interaction mechanism and the crystal distance of the energy transfer is calculated to be 12.64 Å. In short, this K\(_{1-x}\)Na\(_{x}\)Sr\(_{0.995}\)PO\(_{4}:0.005\)Eu\(^{2+}\); Yb\(^{3+}\) phosphor with a tunable emission color may have potential application in phosphor-converted WLEDs.

Experimental

Samples were synthesized using a conventional solid-state reaction. Stoichiometric amounts of K\(_2\)CO\(_3\) (99.99%), Na\(_2\)CO\(_3\) (99.95%), Eu\(_2\)O\(_3\) (99.99%), Na\(_2\)H\(_2\)PO\(_4\) (99.95%) and Tb\(_2\)O\(_7\) (99.99%) were ground in an agate mortar. The mixtures were placed in alumina crucibles with covers and were sintered at 1623 K for 3 h by slowly raising the temperature under a reducing CO atmosphere in a mu furnace. The pellets produced were cooled quickly to room temperature and were ground into powders for subsequent use. The composition and phase purity of the samples were studied with Cu K\(_\alpha\) radiation (\(\lambda = 1.5406\) Å) using a Rigaku D/max-2500 X-ray diffractometer (XRD). Photoluminescence (PL) spectra were recorded using a home-made photoluminescence measurement system, which consisted of a NUVLED array (365 nm emission and 14 nm FWHM) as an excitation source, a miniature fiber optic spectrometer (Ocean Optics USB 4000) as a detector, and a glass cell (with an active area of 1.5 \(\times\) 1.5 cm\(^2\)) to contain the pressed powder samples. The lattice constants of the K\(_{1-x}\)Na\(_x\)Sr\(_{0.995}\)PO\(_{4}:0.005\)Eu\(^{2+}\) powders were calculated using the UnitCell program (general cell parameters analysis system). Photoluminescence excitation (PLE) spectra of the powders were recorded using a RF-5301 fluorescence spectrophotometer equipped with a 150 W Xe lamp as an excitation source in the fluorescence mode. The CL and CL mapping measurements were carried out with a field emission scanning electron microscope system (Quanta 250, FEI) equipped with a CL detector (MonoCL 4 system, Gatan). The phosphors were excited by an electron beam under an accelerating voltage of 20 kV and filament currents of 300 µA. All of the CL mapping images were taken in panchromatic mode for investigating the luminescent properties of the phosphor particles. Decay curves for the samples were recorded using an FLS920 fluorescence spectrophotometer (Edinburgh Instruments) with a nanosecond Flashlamp (nF 920) as the light source. The absolute QY was determined using a PL quantum-efficiency measurement system (C9920-02, Hamamatsu Photonics). The QY measurement system was calibrated using rhodamine B, a standard fluorescence solution. All measurements were performed at room temperature.

Results and discussion

Fig. 1a shows the XRD patterns of the (K\(_{1-x}\)Na\(_x\))\(_{0.995}\)PO\(_{4}:0.005\)Eu\(^{2+}\) \((0 \leq x \leq 0.7)\) powders prepared using the solid-state reaction. The KSr\(_{0.995}\)PO\(_{4}:0.005\)Eu\(^{2+}\) powders show the characteristic pattern associated with an orthorhombic structure (space group Pnma) and are coincident with JCPDS card no. 33-1045. XRD patterns of the (K\(_{1-x}\)Na\(_x\))\(_{0.995}\)PO\(_{4}:0.005\)Eu\(^{2+}\) \((0 < x \leq 0.7)\) samples all maintain the features of the orthorhombic structure. However, the diffraction peaks shift slightly to the higher angle side with increasing Na\(^{+}\) concentration, as shown in Fig. 1b. This observation indicates that substitution of K\(^{+}\) \((r = 1.37\) \(\AA\), CN = 4) with smaller Na\(^{+}\) \((r = 0.99\) \(\AA\), CN = 4) causes a change in the lattice constant of the host lattice, which can be calculated by indexing the XRD data. As shown in Fig. 1c, the lattice constants \(a\) and \(b\) decrease linearly as the Na\(^{+}\) concentration increases, each with a different decay rate, while there is little change in lattice constant \(c\). These observations suggest that the introduction of Na\(^{+}\) shrinks and distorts the KSrPO\(_4\) host lattice. The distortion of the host lattice will have a strong impact on the luminescence properties of the Eu\(^{2+}\) ions with 5d energy levels, which will be discussed later in the section on photoluminescence. For the Na\(^{+}\) concentration where \(x \geq 0.6\), some unknown byproducts...
appear in the powder samples and a heterogeneous mixture of KSrPO₄ and NaSrPO₄, rather than a uniform solid solution, are observed.

It is usually assumed that Eu²⁺ would take up the Sr site in the KSrPO₄ lattice, since there is only one alkaline cation site available. However, Huang et al. confirmed that there were three crystallographic cationic sites in the KSrPO₄ compound, and that there existed a certain degree of disorder between the potassium and strontium ions.⁹⁻¹⁰ In our case, two emission bands centered at 430 and 486 nm are observed under excitation at 365 nm (shown in Fig. 2a) and these are assigned to the 4f⁶5d⁰–4f⁴ transitions of the Eu³⁺. This indicates that there are two different Eu²⁺ sites in the KSrPO₄ host and thus supports Huang’s earlier report. As shown in Fig. S1 (see ESI†) the emission spectrum can be deconvoluted into two Gaussian components with maxima at 430 (referred to Eu(1)) and 486 nm (referred to as Eu(2)). The probability of the Eu(1) site being occupied dominates over the Eu(2) site, based on the emission intensity. In Kₐ₈Sr₁₋₈PO₄:Eu²⁺, the average interatomic distance occupied by Eu(2) increases steadily.

Increasing the Na⁺ concentration from x = 0 to x = 0.6 causes the intensity of the higher energy emission band of the Eu(1) site to decline gradually, whereas the intensity of the lower energy emission band Eu(2) site increases steadily.

We believe that the concentration dependence is due to the preference for Eu²⁺ ions to occupy the Eu(2) site over Eu(1), which has also been observed in other systems.¹¹ The other possible reason for the concentration dependence is an energy transfer from Eu(1) to Eu(2), however this is not supported by experimental observation. Decay curves of the K₁₋ₓNaₓSr₀.₉₉₅PO₄:0.005Eu²⁺ phosphors (x = 0, 0.1, 0.2, 0.4, 0.6) excited under a low-voltage electron beam. (b) An SEM image of the Kₐ₈Na₁₋₈Sr₀.₉₉₅PO₄:0.005Eu²⁺ phosphor. (c) and (d) The monochromatic CL mappings taken at wavelengths of 446 and 498 nm, respectively, for the Kₐ₈Na₁₋₈Sr₀.₉₉₅PO₄:0.005Eu²⁺ phosphor.

For variations in crystal field strength, one of the phenomenological characteristics is a change in the position and shape of the emission band.¹²,¹³ As shown in Fig. 2d, with increasing Na⁺ concentration, different excitation spectra for the lower energy emission bands testify to an increase of the crystal field strength acting upon Eu²⁺. Fig. 2b shows the Stokes shift as a function of the Na⁺ concentration. It is clearly depicted that the Stokes shift of both emission bands increase as the doped Na⁺

Fig. 2 (a) The PL spectra of the K₁₋ₓNaₓSr₀.₉₉₅PO₄:0.005Eu²⁺ phosphor as a function of Na⁺ concentration under excitation at 365 nm. (b) The variation of the Stokes shift of the two emission bands of the K₁₋ₓNaₓSr₀.₉₉₅PO₄:0.005Eu²⁺ phosphors (x = 0, 0.1, 0.2, 0.4, 0.6, 0.7). (c) Normalized PLE spectra of the Kₐ₈Na₁₋₈Sr₀.₉₉₅PO₄:0.005Eu²⁺ phosphor from monitoring the emission of Eu²⁺ at 446 and 498 nm, respectively. (d) Normalized PLE spectra of the K₁₋ₓNaₓSr₀.₉₉₅PO₄:0.005Eu²⁺ phosphor as a function of Na⁺ concentration obtained by monitoring the low energy emission band of Eu²⁺ (λₑm = 498 nm).
concentration increases, suggesting that the observed red shift can be mainly attributed to the increased site distortion and Stokes shift of the Eu\(^{2+}\) ions.

Fig. 2c shows the PL spectra of the (K\(_{0.4}\),Na\(_{0.6}\))Sr\(_{0.995}\)PO\(_4\):0.005Eu\(^{2+}\) phosphor obtained by monitoring the emissions at 446 and 498 nm, respectively. Both spectra exhibit a broad band emission from 220 to 450 nm, which can be assigned to the 4f–5d transitions of the Eu\(^{2+}\) ions. However, their spectral profiles are different, indicating that the two transitions originate from Eu\(^{2+}\) ions occupying two different cation sites, Eu(1) and Eu(2), which is in agreement with the PL results. The normalized PL spectra of the (K\(_{1-x}\),Na\(_x\))Sr\(_{0.995}\)PO\(_4\):0.005Eu\(^{2+}\) phosphors (x = 0, 0.1, 0.2, 0.4, 0.6, 0.7, 1) obtained by monitoring the lower energy emission bands are shown in Fig. 2d. The onset of the 4f\(^{5}\)5d\(^{1}\) band in the PL spectra shifts to the lower energy side as the Na\(^{+}\) content increases along with profile changes, which are a consequence of the change in the crystal field strength acting upon the Eu\(^{2+}\) ions,\(^{16,17}\) as discussed previously.

The influence of the Na\(^{+}\)-doped concentration on the optical properties of the KSr\(_{0.995}\)PO\(_4\):0.005Eu\(^{2+}\) phosphor is further investigated with CL and micro CL mapping analysis. Fig. 3a depicts the CL spectra of the (K\(_{1-x}\),Na\(_x\))Sr\(_{0.995}\)PO\(_4\):0.005Eu\(^{2+}\), yTb\(^{3+}\) phosphors (y = 0, 0.05, 0.07, 0.09) under excitation at 365 nm. In addition, the CL spectrum of a single Tb\(^{3+}\)-doped K\(_{0.4}\)Na\(_{0.6}\)SrPO\(_4\) is also shown. (b) PL spectra of the K\(_{1-x}\),Na\(_x\)Sr\(_{0.995}\)PO\(_4\):0.005Eu\(^{2+}\), yTb\(^{3+}\) phosphors (y = 0, 0.05, 0.07, 0.09 and 0.11) obtained by monitoring the emission at 472 and 542 nm, respectively.

![Fig. 4](image-url)
Fig. 4 (a) Spectral overlap between the PL spectrum of a single Eu\(^{2+}\)-doped K\(_{0.4}\)Na\(_{0.6}\)SrPO\(_4\) phosphor and the PLE spectrum of a single Tb\(^{3+}\)-doped K\(_{0.4}\)Na\(_{0.6}\)SrPO\(_4\) phosphor. In addition, the PL spectrum of a single Tb\(^{3+}\)-doped K\(_{0.4}\)Na\(_{0.6}\)SrPO\(_4\) is also shown. (b) PL spectra of the K\(_{0.4}\)Na\(_{0.6}\)Sr\(_{0.995}\)PO\(_4\):0.005Eu\(^{2+}\), yTb\(^{3+}\) phosphors (y = 0, 0.05, 0.07, 0.09) under excitation at 365 nm. (c) PLE spectra of the K\(_{0.4}\)Na\(_{0.6}\)Sr\(_{0.995}\)PO\(_4\):0.005Eu\(^{2+}\), yTb\(^{3+}\) phosphors (y = 0, 0.05, 0.07, 0.09) obtained by monitoring the emission at 472 and 542 nm, respectively.

![Fig. 5](image-url)
Fig. 5 (a) Luminescence decay curves for Eu\(^{2+}\) in the K\(_{1-x}\),Na\(_x\)Sr\(_{0.995}\)PO\(_4\):0.005Eu\(^{2+}\) phosphors (y = 0, 0.03, 0.05, 0.07, 0.09 and 0.11), excited at 390 nm and monitored at 472 nm. (b) The energy transfer efficiency from Eu\(^{2+}\) to Tb\(^{3+}\) as a function of Tb\(^{3+}\) concentration.

![Fig. 6](image-url)
Fig. 6 Dependence of ln(P\(_{SA}\)) versus ln(C\(_{1/3}\)) for the K\(_{1-x}\),Na\(_x\)Sr\(_{0.995}\)PO\(_4\):0.005Eu\(^{2+}\), yTb\(^{3+}\) phosphors (y = 0.03, 0.05, 0.07, 0.09 and 0.11). The slope (n = 5.2) indicates that the energy transfer is based on a dipole–dipole interaction.

<table>
<thead>
<tr>
<th>No.</th>
<th>K(_{1-x}),Na(x)Sr({0.995})PO(_4):0.005Eu(^{2+}), yTb(^{3+})</th>
<th>CIE (x, y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x = 0, y = 0</td>
<td>(0.166, 0.108)</td>
</tr>
<tr>
<td>2</td>
<td>x = 0.2, y = 0</td>
<td>(0.162, 0.202)</td>
</tr>
<tr>
<td>3</td>
<td>x = 0.4, y = 0</td>
<td>(0.175, 0.314)</td>
</tr>
<tr>
<td>4</td>
<td>x = 0.6, y = 0</td>
<td>(0.202, 0.406)</td>
</tr>
<tr>
<td>5</td>
<td>x = 0.6, y = 0.01</td>
<td>(0.204, 0.415)</td>
</tr>
<tr>
<td>6</td>
<td>x = 0.6, y = 0.03</td>
<td>(0.212, 0.420)</td>
</tr>
<tr>
<td>7</td>
<td>x = 0.6, y = 0.05</td>
<td>(0.220, 0.425)</td>
</tr>
<tr>
<td>8</td>
<td>x = 0.6, y = 0.07</td>
<td>(0.230, 0.435)</td>
</tr>
<tr>
<td>9</td>
<td>x = 0.6, y = 0.09</td>
<td>(0.232, 0.420)</td>
</tr>
</tbody>
</table>

Table 1 Representation of the CIE chromaticity coordinates of the K\(_{1-x}\),Na\(_x\)Sr\(_{0.995}\)PO\(_4\):0.005Eu\(^{2+}\), yTb\(^{3+}\) phosphors (\(\lambda_{ex} = 365\) nm)
phosphors \((x = 0, 0.1, 0.2, 0.4, 0.6, 0.7)\) under excitation at 365 nm. The insets show digital photos and CIE coordinate values corresponding to selected samples upon excitation with a 365 nm UV lamp. The enlarged area is a representation of the CIE chromaticity coordinates of the \(K_{0.4}Na_{0.6}Sr_{0.995}PO_4:0.005Eu^{2+},\ yTb^{3+}\) phosphors \((y = 0.01, 0.05, 0.07, 0.09)\) under excitation at 365 nm.

Under excitation at 365 nm, there is a series of sharp line emissions at 488, 542, 584 and 619 nm, which can be attributed to the characteristic \(T_{1} \rightarrow F_{J}\) transitions of \(Tb^{3+}\) \((J = 6, 5, 4 and 3, respectively)\). Monitoring the emission at 542 nm, many sharp peaks are observed within the wavelength range of 300–490 nm in the PLE spectrum, which originated from the intra-4f transitions of \(Tb^{3+}\). For comparison, the PL spectra of a single \(Eu^{2+}\)-doped \((K_{0.4}Na_{0.6})SrPO_4\) sample are also shown in Fig. 4a. It can be clearly seen that there is a spectral overlap between the broad emission band of \(Eu^{2+}\) and the excitation lines of \(Tb^{3+}\) within the spectral range of 400–510 nm. Therefore, a resonance-type energy transfer from \(Eu^{2+}\) to \(Tb^{3+}\) is expected.\(^{36-38}\). Fig. 4b gives the PL spectra of selected \((K_{0.4}Na_{0.6})Sr_{0.995-}\gammaPO_4:0.005Eu^{2+},\ yTb^{3+}\) samples \((y = 0, 0.05, 0.07, 0.09, 0.11)\). The luminous intensity of \(Eu^{2+}\) at 472 nm \((l_{ex} = 365 \text{ nm})\) decreases steadily with increasing \(Tb^{3+}\) concentration, whereas the relative intensity for \(Tb^{3+}\) increases initially, before reaching a maximum at \(y = 0.09\). Beyond this the \(Tb^{3+}\) intensity decreases slowly, which can be ascribed to \(Tb^{3+}–Tb^{3+}\) internal concentration quenching.\(^{39}\). This result indicates that an energy transfer occurs from \(Eu^{2+}\) to \(Tb^{3+}\), which can be further confirmed from the PLE spectra, which is shown in Fig. 4c. Compared with the PLE spectra of a single \(Eu^{2+}\)-doped \((K_{0.4}Na_{0.6})SrPO_4\) sample \((l_{em} = 472 \text{ nm})\), the appearance of a broad band transition from \(Eu^{2+}\) in the PLE spectra, obtained by monitoring at 542 nm \((Tb^{3+}\) emission\), indicates the occurrence of an energy transfer from \(Eu^{2+}\) to \(Tb^{3+}\). The emission color of \((K_{0.4}Na_{0.6})Sr_{0.995}PO_4:0.005Eu^{2+},\ yTb^{3+}\) phosphors is then tuned by adjusting the \(Tb^{3+}\) concentration, as expected.

In order to further investigate the dynamic luminescence process between \(Eu^{2+}\) and \(Tb^{3+}\), the PL decay curves of \(Eu^{2+}\) in the phosphors were measured, as shown in Fig. 5a. The fluorescence of \(Eu^{3+}\) decays faster and tends to be a non-exponential function with increasing the \(Tb^{3+}\) concentration. The decay process of these samples are characterized by an average lifetime, \(\tau\), which can be calculated using eqn (1) as follows:\(^{26-28}\)

\[
\tau = \frac{\int_{0}^{\infty} I(t)dt}{\int_{0}^{\infty} I(t)dt},
\]

where \(I(t)\) is the luminous intensity at time \(t\). Based on eqn (1), the luminescence lifetimes of \(Eu^{2+}\) are determined to be 0.74, 0.72, 0.69, 0.66, 0.65 and 0.56 μs for \(Tb^{3+}\) concentrations of 0, 0.03, 0.05, 0.07, 0.09 and 0.11, respectively. The decrease in the lifetimes of \(Eu^{2+}\) with increasing \(Tb^{3+}\) concentration, strongly demonstrates an energy transfer from \(Eu^{2+}\) to \(Tb^{3+}\). In addition, the energy transfer efficiency (η) from \(Eu^{2+}\) to \(Tb^{3+}\) is calculated by the following expression:\(^{27,28}\)

\[
\eta = 1 - \frac{\tau_{50}}{\tau_{s}},
\]

where \(\tau_{50}\) and \(\tau_{s}\) represent the lifetime of \(Eu^{2+}\) in the absence and the presence of \(Tb^{3+}\), respectively. As shown in Fig. 5b, the energy transfer efficiency increases gradually with increasing
Tb$^{3+}$ concentration. The energy transfer, η, is calculated to be
0%, 2.7%, 6.7%, 7.4%, 10.8% and 24.5% for the (K$_{0.4}$Na$_{0.6}$)Sr$_{0.995}$PO$_4$:0.005Eu$^{2+}$, yTb$^{3+}$ phosphors with $y = 0$, 0.03, 0.05, 0.07, 0.09 and 0.11, respectively. In general, energy transfer from the sensitizer to activator in a phosphor may take place via a multipolar interaction or an exchange interaction at higher concentrations. On the basis of Dexter’s energy transfer expression for multipolar interactions and Reisfeld’s approximation, the following relationship can be given:

$$P_{SA} = \frac{1}{\tau_s} - \frac{1}{\tau_x} \times C^{n/3}$$ \hspace{1cm} (3)

where P_{SA} is the energy transfer probability and C is the concentration of Tb$^{3+}$. The relationships of $P_{SA} \propto C^{n/3}$ where $n = 6, 8$ and 10 correspond to dipole–dipole, dipole–quadrupole and quadrupole–quadrupole interactions, respectively. Fig. 6 shows the double logarithm plots of P_{SA} versus $C^{1/3}$ for the K$_{0.4}$Na$_{0.6}$Sr$_{0.995}$PO$_4$:0.005Eu$^{2+}$, yTb$^{3+}$ phosphors ($y = 0.03, 0.05, 0.07, 0.09$ and 0.11) with a slope $n = 5.2$. This value is close to 6, indicating that the dominant energy transfer mechanism in the phosphor system is a dipole–dipole interaction. The lifetime decay curves in Fig. 5 are not a perfect single exponential, which yields errors when calculating the decay rates when using the average values. On the other hand, the non-exponential decays suggest the involvement of exchange interactions in the energy transfer. Therefore, both factors cause the value of n to be less than 6, which is within experimental error.

The critical distance for the Eu$^{2+}$ to Tb$^{3+}$ energy transfer, R_{Eu-Tb}, is calculated using the concentration quenching method suggested by Blasse.

The critical transfer distance for Eu$^{2+}$ and Tb$^{3+}$ in K$_{0.4}$Na$_{0.6}$Sr$_{0.995}$PO$_4$ materials is calculated to be 12.46 Å.

The x and y values of the CIE chromaticity coordinates for the selected (K$_{1-x}$Na$_x$)Sr$_{0.995}$PO$_4$:0.005Eu$^{2+}$, yTb$^{3+}$ phosphors are calculated and presented in Table 1 and Fig. 7. As shown, the chromaticity coordinates can be tuned from deep blue ($0.166, 0.108$) to blue-green ($0.210, 0.276$) by adjusting the Na$^+$ concentration. The insets in Fig. 7 show digital photographs corresponding to $x = 0, 0.2, 0.4$ and 0.6 under a 365 nm UV lamp. Fig. 7 demonstrates the color tuning to blue-green ($0.210, 0.276$) by adjustment of the Na$^+$ concentration. The enlarged area shown in Fig. 7 shows the tuning range of the chromaticity coordinates of the (K$_{0.4}$Na$_{0.6}$)Sr$_{0.995}$PO$_4$:0.005Eu$^{2+}$, yTb$^{3+}$ phosphors changing from ($0.202, 0.406$) for $y = 0$ to ($0.232, 0.420$) for $y = 0.09$.

Conclusions

In summary, we have synthesized two series of K$_{1-x}$Na$_x$Sr$_{0.995}$PO$_4$:0.005Eu$^{2+}$ and K$_{0.4}$Na$_{0.6}$Sr$_{0.995}$-yPO$_4$:0.005Eu$^{2+}$, yTb$^{3+}$ phosphors via a high-temperature solid-state reaction and investigated their luminescence properties and crystal structures. Their emission colors are tunable by modulating the crystal field strength and energy transfer. Replacing part of the host lattice cation K$^+$ with Na$^+$ causes a contraction and distortion of the unit cell and lowers the symmetry of the host lattice, such that the emitting color can be tuned from deep blue (~426 nm) to blugreen (~498 nm). The red-shifted emission is due to the increased crystal field splitting of Eu$^{2+}$ at a lowered symmetry site. The emission color can be further tuned using energy transfer by co-doping Tb$^{3+}$ into the system and the chromaticity coordinates of the K$_{0.4}$Na$_{0.6}$Sr$_{0.995}$PO$_4$:0.005Eu$^{2+}$, yTb$^{3+}$ phosphors can be adjusted from ($0.202, 0.406$) for $y = 0$ to ($0.240, 0.420$) for $y = 0.09$.

Energy transfer from Eu$^{2+}$ to Tb$^{3+}$ is demonstrated to have a resonance-type dipole–dipole interaction mechanism, with the critical distance of the energy transfer calculated to be 12.46 Å for K$_{0.4}$Na$_{0.6}$Sr$_{0.995}$PO$_4$:0.005Eu$^{2+}$ and K$_{0.4}$Na$_{0.6}$Sr$_{0.995}$-yPO$_4$:0.005Eu$^{2+}$, yTb$^{3+}$ phosphors are promising candidates for application in solid-state lighting or field emission displays.

Acknowledgements

The work is supported by the National Natural Science Foundation of China (Grant no. 51072032, 41001258), the Program for New Century Excellent Talents in University (NECT-10-0320), the National Basic Research Program (2012CB933703), the Fundamental Research Funds for the Central Universities (Grant no. 12QNJJ007, 12SSXM001), and 111 project (no. B13013).

Notes and references

