
Georgia Southern University Georgia Southern University

Georgia Southern Commons Georgia Southern Commons

15th IMHRC Proceedings (Savannah, Georgia.
USA – 2018) Progress in Material Handling Research

2018

A Framework for Modeling Material Handling with Decentralized A Framework for Modeling Material Handling with Decentralized

Control Control

Kai Furmans
Institute for Material Handling and Logistics, Karlsruhe Institute of Technology, kai.furmans@kit.edu

Kevin R. Gue
Department of Industrial Engineering, University of Louisville, kevin.gue@louisville.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/pmhr_2018

 Part of the Industrial Engineering Commons, Operational Research Commons, and the Operations and

Supply Chain Management Commons

Recommended Citation Recommended Citation
Furmans, Kai and Gue, Kevin R., "A Framework for Modeling Material Handling with Decentralized Control"
(2018). 15th IMHRC Proceedings (Savannah, Georgia. USA – 2018). 23.
https://digitalcommons.georgiasouthern.edu/pmhr_2018/23

This research paper is brought to you for free and open access by the Progress in Material Handling Research at
Georgia Southern Commons. It has been accepted for inclusion in 15th IMHRC Proceedings (Savannah, Georgia.
USA – 2018) by an authorized administrator of Georgia Southern Commons. For more information, please contact
digitalcommons@georgiasouthern.edu.

https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/pmhr_2018
https://digitalcommons.georgiasouthern.edu/pmhr_2018
https://digitalcommons.georgiasouthern.edu/pmhr
https://digitalcommons.georgiasouthern.edu/pmhr_2018?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2018%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/307?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2018%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2018%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1229?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2018%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1229?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2018%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/pmhr_2018/23?utm_source=digitalcommons.georgiasouthern.edu%2Fpmhr_2018%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

A Framework for Modeling Material Handling with
Decentralized Control

Kai Furmans
Institute for Material Handling and Logistics

Karlsruhe Institute of Technology
Karlsruhe, Germany
kai.furmans@kit.edu

Kevin R. Gue
Department of Industrial Engineering

University of Louisville
Louisville, KY, USA

kevin.gue@louisville.edu

Abstract—Despite decades of research in material handling,
the academic community still has no accepted way of describing
material handling requirements in a way that machines and
algorithms can process them. Such a “way of describing”
requires a language with which to describe requirements, objects,
relationships between objects, and so on. We propose a modeling
framework that differs from existing research in two ways: First,
we address material handling modeling from the bottom up
rather than from the top down, meaning we define a set of
elementary functions and then combine them into processes and
more complex relationships that allow us to describe any material
handling activity or requirement. Second, the framework assumes
material handling devices and objects can make decisions and
therefore that control can be decentralized, as might be required
in an Industry 4.0 environment.

The ultimate goal is to be able to create truly flexible material
handling systems, where expansion or redesign of the system is
feasible and easy. This requires a system architecture, where the
design of the systems components, the software architecture, and
the language are congruent.

Index Terms—framework, modeling, material handling, decen-
tralized control

I. MODELING MATERIAL HANDLING

As Leon McGinnis [1] has argued for several years, the
mark of a mature academic discipline is an accepted set of
tools with which scholars can describe its subject matter,
problems, and solutions. For material handling research, the
lack of such a set has meant creating and re-creating tools
on an as-needed basis, and those tools are necessarily difficult
to share or to improve upon directly. As our colleague Jeff
Smith once asked, “How many times has a PhD student started
a warehousing research project by creating his own unique
version of class pallet?”

Previous research has approached the modeling problem
from a top down perspective, starting with a warehouse, for
example, and then breaking down requirements and design
questions into ever smaller parts. We pursue the problem from
the bottom up, starting with specific things (classes, to use
the language of object-oriented programming) and a set of
elementary functions to describe their activities and finishing
with a desired system. We believe this approach has at least
two benefits. First, it facilitates the integration of entirely new
categories of material handling devices into existing models
and operating material handling systems. As long as a new

device can be described as a particular type of thing, it can be
integrated into the framework, even if it has never been seen
in its particulars (think: the introduction of Kiva robots and
mobile shelving). Second, the bottom up approach enables the
same modeling framework to be used across the boundaries
of research, development, and implementation. Our goal is to
develop a framework that describes a “this” as a type of “that,”
which then allows software objects created with the language
to communicate in a way that emulates a real material handling
system. Ultimately, we wish to embed the language in devices
to allow them to communicate in real operations. Thus the
same language could be used to design, model, and operate
the material handling system.

As we describe in [2], a standardized communication pro-
tocol is a design pattern required to build truly adaptable and
expandable systems. The communication protocol we describe
below is a suggestion for this requirement. Our approach
is also limited: we rely on standardized building blocks
and decentralized decision making based on decentralized
information. This might lead to sub-optimal solutions and
also to redundant storage of information. Because solving
real material handling systems optimization problems in real
time is very difficult, and because prices for hardware are
continuing to drop, we assume that these shortcomings are
acceptable.

A primary feature of our research is decentralized control,
meaning devices can make decisions and the ability to commu-
nicate with other devices such that centralized, external control
is unnecessary or at least minimally necessary. Decentralized
control is a particular interest area of the authors and a feature
of systems designed for Industry 4.0, but the framework could
also be used, perhaps with some modification, for systems with
centralized control.

II. LITERATURE REVIEW

Several authors have proposed modeling frameworks for
supply chain [3]–[5], logistics [6], and warehousing systems.
The latter group is most closely related to our framework.
Several papers offer formal frameworks for warehouse design
[1], [7]–[9]. Abdoli [10] and McGinnis [9] describe object-
oriented models for warehousing systems. McGinnis’s work
in particular mentions “embodiment design” as a means of

accomplishing functional requirements, the so-called “how”
to the “what” of warehouse operations.

Among established warehouse modeling frameworks, our
work lies most closely to the Control Layer described by
Sprock et al. [11], which is the lowest level addressed by
the authors. [12] also discuss a “conceptual framework for
operational control in manufacturing systems.”

A significant difference between our work and existing
research on warehouse modeling is that we do not address
design decisions such as, “what should the warehouse look
like in order to meet operational requirements?” By “opera-
tional requirements,” this question usually refers to aggregate
performance measures such as throughput capacity or average
time to respond to an order. These are important issues,
of course, but they are not the focus of our research. We
assume the design of the warehouse is given, and then ask
how to model the devices inside such that specific orders
and other material handling jobs are accomplished to meet
their individual requirements. We are especially interested in
the control layer referred to in some of the literature but not
described in detail.

III. THE FRAMEWORK

The modeling framework defines material handling devices,
which we call modules. The modules have the capability to
perform one or more physical functions related to handling or
storing of material, which we call objects (not to be confused
with software objects). Modules are capable of storing rele-
vant information, contributing to decision making, and then
controlling the execution of these decisions. Decision making
and coordination between the modules takes place with cyber-
(or information-) functions. Objects are described by a set of
attributes, which include an identifier and any requirements for
storage and handling, such as size, weight, and orientation.

Modules consist of all the ordinary material handling de-
vices such as lift trucks, AGVs, shelving units, storage racks,
and so on. Embedded in the cyber functions and processes
is the ability for modules to control their own activities. If
a module happens to be handled by the material handling
system, it also gets the properties of an object.

Figure 1 illustrates the framework for material handling
activities. At both the physical and cyber (or information)
levels, a very limited set of functions can be combined to form
processes. These processes can then be combined to define and
accomplish material handling jobs.

IV. PHYSICAL FUNCTIONS

In our framework, functions are the most basic elements
of material handling activity. We contend that all material
handling operations are comprised of the following physical
functions:

• Store: To store an object is simply to hold or possess it.
For example, a slot in pallet rack stores a pallet; a flow
rack stores totes; and so on. With store we bridge the time
from the availability of an object until it is requested and
retrieved.

Functions Processes Jobs
Combine
to form

Combine
to perform

[Store, move]
Transfer

Pick
Place
Group

ungroup
holder - holder

holder - transforming -
holder

Transforming includes
(pick/place, group/ungroup)

Sequence of Processes
(of which some might run in

parallel)

Job describe the
requirements and the

necessary transformations

Setup functions

Update topology

Plan functions

Execution functions

physical

cyber

Fig. 1: The framework for material handling with decentralized
control.

• Move: A move changes the location or the orientation
of an object without changing the container or holder.
There are two types of moves: (1) to move along a track
or conveyor (to bridge a distance), and (2) a device can
move itself. For example, a section of powered roller
conveyor changes the locations of cartons on itself; a lift
truck moves a pallet (and itself) from receiving to another
location; and an empty lift truck moves itself from one
location to another.

• Transfer: The transfer function moves an object from
one module to another module. This could be the transfer
from one conveyor onto the next or the transfer of a pallet
from the lift truck or an AS/RS-machine to a storage
location. Transfer is distinct from move in that it implies
a change of possession from one device to another.

• Pick: To pick an object is to select and remove it from
its current container or holder. For example, we pick a
carton from a pallet, an item from a carton, or a package
from a tote. Pick is different than move in the sense that
the object was “inside” a container of some sort before
the pick, and after the pick some objects were left behind.

• Place: To place an object is to put it into a container or
holder. For example, workers place items into bins at a
put station; robots place items onto a pallet at a unitizing
station.

• Unitize: Unitizing involves a physical restraint that allows
movement as one entity, and therefore not separately
any more. A reason for unitizing might be a change of
transportation or storage device. For example, to stretch
wrap or band cartons such that they are moved only as a
larger unit is to unitize them.

• Separate: To separate a unitized object allows access
to individual objects, which are inside of the previously
existing unit. For example, to break stretch wrap so that
cartons can be moved individually and not as a group is
to separate them.

In general, physical functions have as many as three re-
quirements: power, control and space. Power refers abstractly
to “that which causes movement.” For example, a conveyor
cannot move cartons unless it is plugged into a source of
electricity, and non-powered skatewheel conveyor cannot move
cartons without a human to push them. Control refers to how
power is delivered to the device, and therefore is always

necessary in the presence of power. For example, a human
applies the power residing in a lift truck by pushing the
throttle. All physical functions have a space requirement. For
example, a robotic arm cannot place a carton in a tote if the
tote is full or too small.

V. MATERIAL HANDLING MODULES

At an abstract level, a material handling module (lift truck,
bot, AS/RS) is simply a collection of one or more functions,
but we believe that defining classes of material handling
modules that embody these functions is helpful for practical
reasons. Below is a set of four classes which we believe is
both comprehensive and extensible:

• Holder: The primary function of a holder module is
simply to store one more more objects. Examples include
a pallet position in pallet rack, a slot in carton flow rack,
or a section of flooring on which products can be stored.

• Mover: A mover moves or transfers objects from one lo-
cation to another. Examples include lift trucks, conveyors,
bots, and humans.

• Picker-Placer: The primary function of a picker-placer
is to perform these two operations. Examples include
humans and robotic arms.

• Unitizer: A unitizer transforms an object such that its
handling unit changes. Examples include stretch wrap
machines and depalletizers. (Notice that a “unitizer” may
also separate an object into many smaller objects.)

In general, material handling devices are either stationary,
movable, or mobile. A stationary device is bolted to the floor
or very difficult to move; a movable device has wheels or
can be easily moved (as on a roller table), but has no ability
to move itself; a mobile device contains its own power and
control, and therefore is fully autonomous with respect to
moving itself. Each class embodies functions, each of which
has requirements. Only when all requirements are met can a
function be performed.

We intend these categories to be flexible enough for model-
ers to use them in the way that seems best. In many cases
a physical device could be considered in more than one
class. For example, a mobile robotic arm that picks and then
transports items to a collection bin is both a mobile picker-
placer and a mobile mover, and if it stops for a while, perhaps
even a mobile holder. Nevertheless, we believe that all current
or imagined material handling devices can be defined by the
physical functions they perform.

We also define a collection to be a set of modules working
together as a permanent or semi-permanent entity to accom-
plish unique functions, processes, or jobs. For example,

• An A-frame is a collection containing many Stationary
Holders (slots or cartridges), a Stationary Mover (con-
veyor) for totes, and multiple Stationary Movers (ejection
mechanisms) for eaches.

• A tilt-tray sorter is a collection that contains a Stationary
Mover (circular conveyor) and many Stationary Movers
(diverters) that move cartons into chutes.

• An AS/RS is a collection of Stationary Holders (racks,
slots) and Mobile Movers (cranes).

• A shuttle-based storage and retrieval system is a col-
lection of Stationary Holders (racks, slots) and Mobile
Movers (shuttles, vertical lifts).

Because modules might be limited by the size or weight
of the objects they can handle, the framework requires an
object-to-module compatibility matrix that defines allowable
operations. Because not all modules are compatible with each
other when transferring an object, the framework requires an-
other compatibility matrix describing the relationship between
modules, the module-to-module compatibility matrix.

VI. CYBER FUNCTIONS

A number of cyber or information functions are required
to enable these physical functions and processes. Before
discussing these functions, observe that information functions
presuppose the ability to communicate. We assume that mate-
rial handling modules are of two types—those with the ability
to communicate and those without. Communicating modules
(AGVs, lift trucks, humans via handheld devices, conveyors
with control, etc.) possess the ability to send and receive
messages with other communicating devices via physical or
wireless network connectivity. Modules unable to communi-
cate (slots in pallet racking, floor space in block storage, etc.)
have caretakers responsible for communicating on their behalf.

A caretaker is any module that has the ability to perform a
physical function with the non-communicating module. For
example, caretakers for a slot in pallet rack would be all
lift trucks and other devices that can store or retrieve pallets
from that location. Any device executing a transfer (physical
function) with that slot broadcasts an update on the status of
the slot to all other caretakers. This way, caretakers know the
status of all modules under their care at all times.

Cyber functions can be thought of in three phases of
material handling activity: setup, planning, and execution.

A. Setup Functions

After the physical design is established, material handling
modules must establish connections among themselves. Setup
begins by creating a means for communication, which might
be physical via wires or virtual via a wireless network. After
physical connections are established, the following functions
are available:

• Announce: Announce the presence of the module in the
network.

• Establish immediate neighborhood: Make connections
to physical neighbors, if appropriate. We assume that
modules can determine which other modules are either
directly connected or close enough to perform joint
functions and processes.

• Disestablish immediate neighborhood, which might be
used when changing a configuration. For example, an
AGV or robot that docks at a transfer station would es-
tablish and then disestablish an immediate neighborhood.

1 2 3 4 5

6

8 9 10

7

EW

N

S

from to Exit distance [no.
modules]from to Exit distance [no.
modules]

1 2 E 1

1 3 E 2

1 4 E 3

1 4 E 10

3 5 E 2

3 5 S 6

.

.

.

„distance vector“

Fig. 2: Example of a network with portions of the associated
distance vector for Modules 1 and 3.

• Disconnect: Announce to neighbors that the module is
not present anymore.

• Disconnect detected: The neighbor detects that a module
is no longer connected.

Each module requires knowledge about the modules con-
nected to it. We say such modules are in the same “neighbor-
hood.” Modules also require knowledge of how objects they
contain can reach any other allowable module in the system.
Specifically, the host module must know through which of
its exits to send the object and what is the distance to the
destination module. Notice that there may be many possible
paths to a destination module; therefore we keep several entries
per destination module in this list. Although this results in a
dynamic list, which each module maintains, we refer to the
result as the “distance vector.”

When modules change their location in the system (via
ordinary travel, for example) or leave the system by becoming
inactive, other modules need to know where they are in order
to calculate distances and plan routes. Therefore, at regular
intervals the distance vector is updated by exchanging the
topological information. This also serves as a sort of “heart-
beat,” where the absence of a new distance vector indicates
that a module is no longer available.

The following function updates the distance vector:
• Update distances: The distance vector associates with

each other module how far it is to this module, if the
connection is made through a particular neighbor. It
indicates to immediate neighbors which other modules
can be reached directly through a module and the known
distances to other modules. See Figure 2 for an example.

B. Planning Functions

The main task of material handling systems is to move
things and store them until they are needed. Other tasks are
related to the transformation of the items themselves, such
as packaging. For customer orders several items have to be
picked, collected and then packed into one or several handling
units. On the receiving side, items are received in units perhaps

unfit for storage, in which case they must separated, possibly
repackaged, and then stored in smaller quantities.

Because our proposed modules are only able to perform a
limited number of tasks and are distributed over a warehouse,
distribution center, factory or similar facility, it is necessary
to identify, find, and enlist the modules required to do a job,
because only a combination of modules is able to perform the
job.

We begin with the simple movement jobs, which fall into
three categories:

• Source known, destination known: The object and its
current location are known; therefore we must find mod-
ules able to transport from the source to the destination
and reserve them for the job.

• Source known, destination unknown: The object and its
location are known, but a suitable storage location must
be found and all the modules required to transport the
object must be identified and booked for the job.

• Source unknown, destination known: The object type
(e.g., part number), required quantity, and destination
(e.g., packing area) are known; the current storage lo-
cation(s) of the corresponding objects must be found and
then all modules required to transport the objects from
their current locations to the destination must be found
and booked.

Therefore, three different tasks must be solved, using the
cyber functions of the modules in our material handling
system:

• Find route: find a suitable route from the source to the
destination and make reservations for an object to be
moved along this route.

• Find object: identify a set of modules where objects
satisfying these characteristics are held (or stored).

• Find storage location: identify a set of modules that
satisfy the characteristics and are not currently holding
anything.

For routing, we must find a path from the source to the
destination and make the reservations that allow the movement
of the object without creating deadlocks or livelocks. The
“logical time” method for doing so is described in [13].

Routing is an iterative, bilateral negotiation cycle between
modules in the same immediate neighborhood. Negotiation is
possible because we assume cyber functions are much faster
than physical functions. Furthermore, bilateral negotiations
allow a decentralized implementation of all functions in the
framework. The basic logic is: ask a neighbor that has not
yet been asked and which is the next best solution, whether
it is willing to participate in the moving of an object. This
request is passed from module to module until the destination
is reached. Then a cascade of willing messages are sent along
modules connecting the destination and the source. These
messages are followed by a cascade of commit messages in the
opposite direction [14]. The cyber functions used for routing
are:

• Find next module: an internal function of each module,
including those acting as caretakers. This function iden-
tifies based on its distances vector the next best, but not
yet requested module on the route.

• Request: send request to the selected module to see if it
is available to participate in the process at a future point
in logical time.

• Check request: an internal function of each module,
including those acting as caretakers, that determines the
earliest (logical) time that a request can be fulfilled. It
might be necessary to send requests further downstream
before the earliest time can be determined.

• Reply to request: Returns willing if the request can be
fulfilled, possibly with a logical time at which the request
can be fulfilled. Returns not willing if the request cannot
be fulfilled.

• Commit: Sends a commit message to a selected module
if it answered with willing.

• Cancel request: Sends a cancel request message to all
modules requested but not committed to. This message
releases all modules that responded with willing but were
not selected because a better solution was found. All
reservations made by requested modules receiving cancel
request are canceled.

To find a suitable and empty storage location, we use
broadcast messages. Five functions are required:

• Find storage location: an empty storage location for an
object with specified characteristics is requested.

• Empty storage location available: responds to a request
with yes or no, and possibly with an available time. Yes
implies that the holder is empty and that no previous
reservation before that time has been accepted.

• Commit to storage location: notifies a storage location
(a holder) that it should book the reservation at the
appointed time.

• Cancel request for storage location: informs the storage
location that it will not be used.

• Process requests: an internal function that keeps track
of requests and responses.

Because the distance vector allows a module to determine
which locations are closest in time, the routing task starts with
the closest destination.

Searching for products, or more specifically for holders or
caretakers responsible for them, is analogous to searching for
locations. Modules use a similar set of functions.

The physical functions unitize and separate have a cyber
counterpart:

• Group: To group objects is to consider them as a single
object. Grouping is frequently associated with the phys-
ical function of unitizing. It is important not to lose the
information about the objects, which are now inside of
a group, in case they have to be accessed after a later
ungrouping.

• Ungroup: To ungroup objects is to consider them as
separate objects for cyber processes.

To see how these problems might be addressed in prac-
tice, consider the activity of receiving, which is the task
of admitting a product into the system, finding a location
for storage, and transporting it to that location. Upon first
detection and identification, say by scanning at the trailer door,
the device performing the scan recognizes the product type
and determines via the object-to-module compatibility matrix
the preferred means of storage. Suppose the item (a pallet)
must go to bulk storage. The handheld scanner performs the
function Find storage location and broadcasts a request to all
caretakers of pallet locations. One or more caretakers responds
with Empty storage location available on behalf of empty
locations. The scanner module responds to its preferred storage
location with Commit to storage location, perhaps by using a
closest open location algorithm and executes Cancel request
to all other requested caretakers.

Once the storage location is reserved, the handheld starts
to plan a route to the selected storage location by executing
the Find next module function. It then Requests that neighbor,
which, if it can execute the entire task, responds with Willing;
otherwise, it the request is passed along the shortest route
until it reaches the caretaker of the selected storage location.
Once the request reaches the destination successfully, a Willing
message is passed all the way back to the scanner module,
which then answers with a Commit message back to the
destination location. If the shortest path cannot be booked,
the second best path is tried from the first module at which a
not willing message was received. This process ends when a
route has been found or if all neighbors have answered with
not willing. If the latter has occured, after a random timeout
the same process is started again (similar to the CSMA/CD-
protocol).

C. Execution Functions

As soon as the route has been successfully established, the
physical transactions are started. Since the implementation of
the physical function requires the control of drives and sensors
in a real-time environment with a bilateral coordination be-
tween adjacent modules, execution is delegated to a lower level
and encapsulated in a begin transaction and end transaction
sequence. The initiating module sends a begin transaction
message, then control is handed over to the physical layer,
while both modules are in the busy state. Once the receiving
module has firmly established by its sensors that the object is
completely transferred to the receiving module, it triggers the
end transaction function and the sending module sets its state
to idle.

VII. CYBER-PHYSICAL PROCESSES, MATERIAL
HANDLING AREAS, AND JOBS

The jobs that a material handling system has to perform
define the capabilities it must to have in order to satisfy
requirements. In the functional design of a material handling
system (see [9]), specific areas of the material handling system
are associated with specific requirements. The embodiment

design then describes how these requirements are imple-
mented. This requires the selection of the suitable modules
(for storage, movement, packaging, etc.) and the arrangement
and connection of these modules, thus creating an area of
the material handling system associated with providing the
required operations for that job.

In the design process, a requirement is mapped onto an area
of the material handling system and thus associated with the
process for which that area is designed. We assume that the
description of a job contains the required processes.

At a fundamental level, material flow is movement of
objects between two places of rest, which we call buffers. In
the language of modules, a buffer is a collection of holders.
With this view of material handling movement, processes such
as merge, split, sort, sequence, and time-specific release are
simply outcomes of coordinated route planning. For example,
cartons on two lengths (modules) of conveyor might flow
into a common length of conveyor (itself a module), each
with a specific destination. Because routes for each carton
are coordinated with logical time, there is no collision of
material at the merge point and the process appears to the eye
to be a simple “merge.” Similarly, sequencing is the task of
coordinating routes such that departures through a common
module (the exit point) are ordered as required. Sortation
assigns to each object a specific destination associated with
a criterion, such as all parcels for a specific route being sent
out through a specific module.

The existence of a buffer at the beginning and the end
of a process implies that the process is decoupled from its
predecessors and successors. Therefore it is sufficient to plan
and execute the process as a series of physical and cyber
functions between two buffers.

A job materializes at a module that represents a boundary
of the material handling system. For an outbound job, this
module is probably part of the shipping area. After analyzing
the requirements of the job, the required areas of the material
handling system are identified and a planning process, anal-
ogous to the one from module to module is executed on an
area level. Then the result is handed over to the areas for the
planning from buffer to buffer. In the most simple case, when
we store unit loads and retrieve them as unit loads, collect
them in a shipping area per truck, and then load the trucks,
we would have two processes, one retrieving from the storage
location, sortation per truck ramp and buffering there. Once
this is done, the next process would take care of retrieving the
pallets from the buffer and loading them into the truck.

Let us now assume we have two storage areas, one in a
pallet high-bay warehouse and another area for tote storage
with shuttles. The customer requests unit loads as well as
consolidated pallets with titles, which are shrink wrapped and
then consolidated with the unit loads before shipping. The
design might result in five areas:

• a unit load warehouse with the process that retrieves
pallets and brings them to the incoming buffer of a
sortation area,

• a shuttle-system that stores and retrieves totes and brings
them to a palletizing area,

• a palletizing area, where the totes are grouped, placed on
a pallet and unitized, and then sent to the incoming buffer
of the sortation area,

• a sortation area, where incoming pallets are sorted ac-
cording to destination and then sent to the shipping buffer,
and

• a shipping area, where buffered pallets are loaded into
the designated truck.

Each of these areas contributes to the customer requirement
and jointly fulfills the requirements. The processes are planned
and executed sequentially, started and concluded with start
process and end process messages between the areas.

VIII. CONCLUSIONS

We believe the framework described in this paper lies
beneath, so to speak, other modeling frameworks more focused
on design. As such, the cyber and physical functions could be
viewed as an operating system for decentralized control in
material handling.

Given our framework, many interesting research questions
might be addressed. For example, the communications burden
in a decentralized system is frequently a concern, especially
when objects are attempting to find shortest paths among
several alternatives at the same time. What approach obtains
the best operational performance subject to constraints on
the number of messages passed? Is it better to issue parallel
requests or better to inquire for resources one by one? Other
questions could be imagined.

Our framework is intended not just for modeling and
analysis, but also for control of real devices in decentralized or
Industry 4.0 environments. It is our hope that the framework
could become a starting point for a common language spoken
from the research laboratory to the warehouse floor.

IX. ACKNOWLEDGMENT

The authors are thankful for the generous support of Toyota
Material Handling North America. We also thank our students
Hannah Bachus, Benedikt Fuß, Gang Hao, and Allison Lloyd
for their help.

REFERENCES

[1] L. McGinnis, M. Schmidt, and D. Spee, “Model based systems engineer-
ing and warehouse design,” in Efficiency and Innovation in Logistics,
U. Clausen, M. ten Hompel, and J. F. Meier, Eds. Cham: Springer
International Publishing, 2014, pp. 161–178.

[2] K. Furmans, F. Schönung, and K. R. Gue, “Plug-and-work Material
Handling Systems,” Progress in Material Handling Research, no. 1, pp.
132–142, 2010.

[3] S. Biswas and Y. Narahari, “Object Oriented Modeling
and Decision Support for Supply Chains,” European Journal
of Operational Research, vol. 153, no. 3, pp. 704 –
726, 2004, eURO Young Scientists. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377221702008068

[4] M. Fayez, L. Rabelo, and M. Mollaghasemi, “Ontologies for Supply
Chain Simulation Modeling,” in Simulation Conference, 2005 Proceed-
ings of the Winter. IEEE, 2005, pp. 7–pp.

[5] M. D. Rossetti and H.-T. Chan, “Supply Chain Management Simulation:
a Prototype Object-oriented Supply Chain Simulation Framework,” in
Proceedings of the 35th conference on Winter simulation: driving
innovation. Winter Simulation Conference, 2003, pp. 1612–1620.

[6] M. Glöckner and A. Ludwig, “Ontological structuring of
logistics services,” Proceedings of the International Conference
on Web Intelligence - WI ’17, 2017. [Online]. Available:
http://dx.doi.org/10.1145/3106426.3106538

[7] L. McGinnis, E. Huang, K. S. Kwon, and V. Ustun, “Ontologies and
Simulation: A Practical Approach,” Journal of Simulation, vol. 5, no. 3,
pp. 190–201, 2011.

[8] L. McGinnis, “Integrating Analysis Into a Warehouse Design Workflow,”
in Proceedings of the 12th IMHRC in Cincinnati, Ohio, USA, ser.
Progress in Material Handling, MHI. MHI, 2014.

[9] ——, “An Object Oriented and Axiomatic Theory of Warehouse De-
sign,” in Proceedings of the 12th IMHRC in Gardanne, France, ser.
Progress in Material Handling Research,, MHI. MHI, 2012.

[10] S. Abdoli, S. Kara, and B. Kornfeld, “Application of Dynamic
Value Stream Mapping in Warehousing Context,” Modern Applied
Science, vol. 11, no. 1, p. 76, Oct 2016. [Online]. Available:
http://dx.doi.org/10.5539/mas.v11n1p76

[11] T. Sprock, A. Murrenhoff, and L. F. McGinnis, “A Hierarchical Ap-
proach to Warehouse Design,” International Journal of Production
Research, vol. 55, no. 21, pp. 6331–6343, 2017.

[12] T. Sprock and L. F. McGinnis, “Analysis of Functional Architectures for
Discrete Event Logistics Systems (DELS),” Procedia Computer Science,
vol. 44, pp. 517–526, 2015.

[13] Z. Seibold, “Logical Time for Decentralized Control of Material Han-
dling Systems,” Ph.D. dissertation, KIT, Karlsruhe Institute of Technol-
ogy, Karlsruhe, Germany, June 2016 2016.

[14] K. R. Gue, K. Furmans, Z. Seibold, and O. Uludağ, “Gridstore: a puzzle-
based storage system with decentralized control,” IEEE Transactions on
Automation Science and Engineering, vol. 11, no. 2, pp. 429–438, 2014.

	A Framework for Modeling Material Handling with Decentralized Control
	Recommended Citation

	tmp.1534349098.pdf._NXYp

