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Abstract—Our research proposes a framework to obtain 

and analyze real time data concerning the dynamic and natural 

motion of individuals in manufacturing-like processes that involve 

human labor. The framework that we propose consists of five main 

components: a tracking system, a system of sensors, a processor 

that collects time series data, data processing and discovery 

module, and an alert or reporting component. Using motion 

capture cameras, data is collected on a variety of human subjects 

performing simulated labor-intensive manufacturing operations. 

This data is analyzed for identification of actual and optimal 

activity motions. This project has significant potential impact for 

contribution and advancement of the material handling, logistics, 

and supply chain industry. This simulation process will enable a 

company to modify human motion operations that are non-value-

added from the activity process. 

Keywords—smart manufacturing, analytics, motion capture 

I. INTRODUCTION 

This manuscript proposes and implements a framework to 

study human motion that relies on modern approaches to data 

collection and data analysis.  The main objective of the study is 

to improve workers' safety and efficiency within a 

manufacturing environment. 

At the beginning of the 20th Century, Frederick Winslow 

Taylor introduced a scientific approach to management.  Within 

this context, “scientific” means based on experimentation rather 

than on tradition or opinions.  Taylor’s approach is known as 

“time and motion study” and consists of breaking down any 

physical work task into elementary motions.  The objective was 

to seek the “one best way” to perform a given movement 

[1][2][3]. 

During this period, in which the majority of manufacturing 

processes were based on human activity, efforts for 

improvement included assembly line process specialization.  

This application of scientific management was successful in 

increasing the industrial output of the United States [4]. 

Taylor prepared the path for industrial acceptance of John 

Dewey’s theory that man is merely a machine.  Increasing 

efficiency further has been achieved by replacing human 

workers with automation (i.e., robotics).  However, there still 

remain manufacturing processes which are, and always will be, 

best performed by human workers [4]. 

For this reason, time and motion studies are still of great 

relevance in multiple fields [5][6][7]; and modern tools have 

been devised to make its implementation more comprehensive, 

efficient and precise [8][9][10]. 

II. RELATED WORK 

A. Technologies 

Today a host of technologies exist to support continued 

efforts for analyzing human motions.  Because of the reduced 

portion of the manufacturing process conducted by humans, 

most of these technologies are being applied to non-

manufacturing areas such as: ergonomics, computer gaming, 

entertainment (movie animation), posture analysis, and gait 

analysis. 

One of the more advanced technologies is that of motion 

capture.  Motion capture is defined as the process of recording 

a live motion event and translating it into mathematically-

usable signals [11].  There are a variety of specific technologies 

that meet this definition including: magnetic, mechanic, optical, 

acoustic, and inertial. 

Magnetic motion capture systems place sensors on the body 

to measure low-frequency magnetic fields generated by a 

transmitter source. A transmitter source consists of three 

perpendicular coils that emit a magnetic field when a current is 

applied. The current sent to these coils generates three mutually 

perpendicular fields during each measurement cycle. The 3D 

sensors measure the strength of those fields. Sensors and source 

are connected to a processor that calculates position and 

orientation of each sensor. One advantage of magnetic systems 

is that they do not suffer from line-of-sight issues. A 

disadvantage of magnetic systems is that magnetic fields 

decrease in power rapidly as the distance from the generating 

source increases and so they can easily be disturbed by 

magnetic materials. 

Mechanical trackers utilize rigid or flexible goniometers.  

Goniometers are angle measuring devices.  These goniometers 

are placed in general correspondence to the joints of the user. 

They provide joint angle data to kinematic algorithms used to 

determine body posture.  There are some disadvantages in using 

mechanical systems.  For instance, it is difficult to align the 

goniometer with body joints.  Also, positioning the goniometers 



on soft tissue can be problematic. Goniometers placed on soft 

tissue allows their position relative to the body to change as 

motion occurs. 

Acoustic tracking systems can determine position through 

time-of-flight of ultrasonic pulses and triangulation or phase 

coherence. Transmitters can either be placed on a body segment 

or fixed in the measurement volume. The main disadvantage of 

acoustic tracking systems is that the physics of sound limit the 

accuracy, update rate and range.  In addition, a clear line-of-

sight must be maintained and reflections of sound can also 

interfere. 

Inertial sensors use the property of bodies to maintain 

constant translational and rotational velocity, unless disturbed 

by forces or torques, respectively. Miniaturized and 

micromachined sensors make practical inertial tracking; in 

particular, rate sensors and accelerometers. Rate gyroscopes 

measures angular velocity, and if integrated over time provides 

the change in angle with respect to an initially known angle.  

Accelerometers measure acceleration, including gravitational 

acceleration. Velocity and position can also be determined. A 

disadvantage of inertial systems is that noise and bias errors, 

associated with small and inexpensive sensors, make it 

impractical to track orientation and position for long time 

periods if no compensation is applied. 

Optical sensing encompasses a large and varying collection 

of technologies.  Image-based systems determine position by 

using multiple cameras to track predetermined points (markers) 

on the subject’s body segments, aligned with specific bony 

landmarks. The position is estimated through the use of multiple 

2D images of the working volume. Stereometric techniques 

correlate common tracking points on the tracked objects in each 

image and use this information along with knowledge 

concerning the relationship between each of the images and 

camera parameters to calculate position.  

The markers can either be passive (reflective) or active 

(light emitting). Reflective systems use infrared (IR) LED’s 

mounted around the camera lens, along with IR pass filters 

placed over the camera lens and measure the light reflected 

from the retroreflective markers.  It is the most flexible and 

common method used in the industry.  

Optical systems based on pulsed-LED’s measure the 

infrared light emitted by the LED’s placed on the body 

segments. This technique uses LED markers connected by 

wires to the motion capture suit. A battery or charger pack must 

also be worn by the subject.  Also, camera tracking of natural 

objects without the aid of markers is possible, but in general less 

accurate (i.e., Kinect). It is largely based on computer vision 

techniques for pattern recognition and often requires high 

computational resources.  

Structured light systems use lasers or beamed light to create 

a plane of light that is swept across the image. They are more 

appropriate for mapping applications than dynamic tracking of 

human body motion. The main disadvantages of optical systems 

is that they suffer from occlusion (line-of-sight) problems 

whenever a required light path is blocked and interference from 

other light sources or reflections may also be a problem. 

 

B. Human Conditions 

The human body is a complex combination of rigid and soft 

components that both allows for work to be accomplished 

through motion and flexibility to allow for infinite variations of 

movement.  While these characteristics make the human body 

extremely adaptable and malleable it makes measurement and 

evaluation of motions extremely difficult. 

C. Body dynamic simulations 

Rigid body dynamics: rigid-body dynamics is a subtopic of 

classical mechanics involving the use of Newton's laws of 

motion to solve for the motion of rigid bodies moving in 1D, 

2D, or 3D space. We may think of a rigid body as a distributed 

mass, that is, a mass that has length, area, and/or volume rather 

than occupying only a single point in space. Rigid body models 

have application in stiff strings (modeling them as disks of mass 

interconnect by ideal springs), rigid bridges, resonator braces, 

and so on.  Rigid bodies do not change, that is, the relative 

distance of two points on the object is fixed [12]. 

Soft body dynamics: soft body dynamics is a field of 

computer graphics that focuses on visually realistic physical 

simulations of the motion and properties of deformable objects 

(or soft bodies).  The applications are mostly in video games 

and film. Unlike in simulation of rigid bodies, the shape of soft 

bodies can change, meaning that the relative distance of two 

points on the object is not fixed. While the relative distances of 

points are not fixed, the body is expected to retain its shape to 

some degree (unlike a fluid). The scope of soft body dynamics 

is quite broad, including simulation of soft organic materials 

such as muscle, fat, hair and vegetation, as well as other 

deformable materials such as clothing and fabric. Generally, 

these methods only provide visually plausible emulations rather 

than accurate scientific/engineering simulations, though there is 

some crossover with scientific methods, particularly in the case 

of finite element simulations. (http://joeyfladderak.com/lets-

talk-physics-soft-body-dynamics/) 

D. Skeletal motion vs topical (skin) motion 

The majority of motion research focuses on the skeletal 

movements of a soft body, attempting to minimize the 

variability of movement associated with skin deformation.  The 

ancillary motion between the motion of the rigid bone and the 

soft body skin and muscles is referred to as the “skin motion 

artifact”.  Significant literature exists for identifying ways for 

capturing the variability in motion attributable to the skin 

motion artifact to remove it from analysis.  The purpose of this 

practice is to better identify bone position and orientation and 

improve joint kinematic estimates.  However, the applied 

workplace application of this research is more interested in the 

human motions as they actually occur, including the associated 

skin artefacts. 

 



III. DESIGN AND IMPLEMENTATION 

The proposed framework consists of a motion capture 

(MoCap) environment and data collection system, a data 

preprocessing and storage module, a data-intensive analytics 

module, and a reporting module.  Figure 1 shows the system 

configuration.  Figure 2 shows the proposed framework. 

 

 
Figure 1: MOCAP Environment 

 

The system is further broken down into sub-processes as 

displayed below in Figure 2. 

 

A. MoCap environment and data collection 

The MoCap environment is setup to simulate a 

manufacturing work space that requires human participation in 

an assembly process.  Human subjects (workers) are outfitted 

with special biometric capturing clothing and reflective 

markers. 

 
Figure 2: MOCAP subprocesses 

 

The data capturing environment consists of six Qualisys 

Oqus infrared cameras and one Opus 210c video camera 

positioned around a simulated manufacturing operation board.  

The infrared cameras are positioned relative to the human 

subject to maximize the potential that all motion markers are 

visually accessible by at least three cameras at all times.  They 

are set to record human motions as a series of real time x-y-z 

coordinates as a function of time (>1000 frames per second) 

associated with the positions of the reflective markers.  The 

investigators are unaware of any other M&MH research efforts 

with this level of accuracy. 

  

 

Figure 3: MAP Project’s current configuration 

The environment layout is shown in Figure 3. The M&MH 

tasks simulated by the study subject require an individual to 

grasp an object, move it, and insert it into ducts attached to a 

pegboard. The motions performed build from basic individual 

motion components such as straight lines to more complex 

motions simulating activities such as gluing or painting (Figure 

4).  

The arcs and arrows in Figure 4 define the path that an 

object held by a subject must travel. 

 

Figure 4: Example of the complexity of movements 

In addition to the subject and movement data, other 

documented experimental factors include those associated with 

the task itself including: motion distance and direction, number 

of repetitions, and instance duration.  

Finally, biomedical data is also collected by special 

biomedical clothing worn by the subject.  This clothing captures 

information such as heart rate, HRV (to estimate stress and 

fatigue), heart rate recovery, breathing rate (RPM), minute 

ventilation (L/min), activity intensity, and peak acceleration. 

In total, three types of data are collected: descriptive, 

biomedical, and motion.  Once collected the data must be 

formatted and labeled to be streamed to the analytical module.  

The descriptive and biomedical data are coded into an excel 

spreadsheet.  The motion data requires further processing.  

Using the MoCap manager software, the experiment team must 

review the motion capture data by ensuring proper association 



of coordinate data with the correct marker.  Once completed, 

the software builds a computer model (i.e. virtual model) of the 

operator performing the defined moves. Upon completion of 

this step, the experiment team must verify and validate the 

motion capture data by comparing the virtual model of the 

moves to the actual moves obtained from video recordings. This 

step helps to identify and mark spurious data events such as 

sneezes, scratches, or other motions outside of those expected. 

B. Data Cleaning and Transformation 

Once collected, the data is saved in a .C3D format.  The C3D 

format is a public domain, standard binary file format used to 

record synchronized 3D and analog data.  It is supported by all 

major 3D Motion Capture System manufacturers, and other 

companies in the Biomechanics, Motion Capture, and 

Animation Industries [13].  The file is capable of being 

manipulated using the Python package c3d 0.3.0 [14] and R 

[15]. 

In order to analyze multiple repetitions, individual motion 

segments must be identified and their corresponding time series 

must be aligned. 

Therefore, the successful analysis of multiple repetitions of 

a movement depends on identifying those movements, very 

clearly, by a segmentation process; and the posterior alignment 

of those segments by an alignment process.  The segmentation 

of the time series corresponding to each movement depends on 

the identification of the initial and destination points of each 

movement.  The alignment of these time series, depends on the 

segmentation of the movements. 

C. Segmentation Process 

The data collected is composed of a repeating group of time 

series each composed of point coordinates (spatial data) along 

a predefined path with identified start and stop locations.  

Spatial data is collected for a group of individual sensors, over 

time (i.e., coordinates Xkt,Ykt,Zkt; where k is the sensor 

identifier and t is time). 

For any single worker, the data is collected as a continuum 

of multiple repetitions (i.e., Xktr,Yktr,Zktr; where r is the 

repetition identifier).  In order to prepare the data for the 

analysis phase, it is necessary to separate and identify the 

individual motion repetitions and segments of the repeated 

movements.  In this way, the data is segmented into unique 

iterations that can be analyzed by the machine learning 

algorithms. 

The segmentation process depends on the identification of 

each movement segment composed of the start location (arrow 

tail) and the destination location (arrowhead).  These points are 

clearly defined in the description for each movement (see 

Figure 4).  The movement starts at time t_ini and ends at t_final, 

for each segment.  Thus, each segment is composed of a series 

of point coordinates over a measured period of time. 

Thus, data collection then results in a number of point 

motion segments where each segment may differ from other 

segments by time, and/or point positions. 

Identification of a segment requires first identifying the start 

and end points for each segment.  As the motions are completed 

by humans there is not a singular static point that can be 

identified as either a starting point or an ending point.   

In general, a starting point is defined as that location from 

which directed motion to achieve an objective begins.  In the 

case of this research, it occurs at the point where the worker 

initiates the use of the tool.  This is captured by a distinct change 

in direction within a specified origination area (defined by its 

proximity to the origination point).  Further, the destination 

point is also captured by a distinct change in direction occurring 

within a specified destination area.  A distinct change in 

direction is defined by the specific motion being measured. 

Once the segment origination and destination points have 

been identified the segment can be identified.  Once all 

segments have been identified it then becomes necessary to 

align each segment. 

First a base segment must be selected and it’s motion 

duration determined.  Once selected, each subsequent segment 

must be aligned to the base segment motion duration for 

purposes of comparison and analysis. 

To align the subsequent segments, select a segment.  

Identify the origination (t_ini) and destination (t_final) times.  

Let the difference between the two times be 𝛥𝑡. 

When multiple repetitions of the same movement are 

generated, most likely it is the case that 𝛥𝑡,𝑟=𝑖 ≠ 𝛥𝑡,𝑟=𝑗; where 

𝑖 ≠ 𝑗. That is, given two repetitions, most likely, the times 

elapsed between the beginning of the movement and the end of 

the movement are not the same for the two repetitions.  

Therefore, there is no one-to-one correspondence between the 

number of data points for the time series corresponding to 

repetitions r=1 and r=2. 

We use dynamic time warping to adjust subsequent 

segments to the base segment allowing for comparative analysis 

of the motions. 

Once all segments have been aligned, techniques for outlier 

identification are used to identify anomalies in the data.  Once 

identified, the anomalies are examined and corrected. 

IV. DATA ANALYSIS 

The main pursuit of the data analysis phase is to reveal 

patterns of physical human motion, that could reveal behavior 

and habits, that take place during the performance of 

manufacturing tasks.  Pattern discovery techniques that are 

applicable to time series are most relevant.  Data visualization 

techniques are used to allow human experts to study these 

motions, in the search for such patterns. 

A hypothesis associated with this framework is that the 

study of repetitive motion patterns could help discover behavior 

that would result in an improvement of worker safety and 

productivity. 

Being able to analyze motions from individual workers also 

creates various possibilities.  For instance, the ability to observe 



the variability of how an individual worker behaves in the 

workplace, may allow for the improvement of the work 

environment (i.e., workstation design), or motion of the task 

(i.e., resting times).  The possibility of capturing and analyzing 

a worker’s pattern of motions also provides for the possibility 

of comparing the motions of any group of two or more workers 

performing the same task.  The results from such analysis could 

be used to identify and improve task specific motions resulting 

in safer and more productive motion patterns (i.e., training, 

practices).  

A. Descriptive 

The data will be analyzed using a variety of machine 

learning and statistical data analysis tools (e.g., time series, 

regression, induction trees, random forests) to identify 

characteristics and patterns of the motions. 

In preliminary research, the time series for the position of 

one reflector on a subjects’ dominant arm was described using 

time series plots.  Figure 5 presents nine iterations (in different 

colors) of the behavior of this one reflector on the right hand of 

an “operator” where the motion consisted of the subject using 

their right hand, carried a tool from the right side to left side of 

the work environment.  The figure below only displays what 

corresponds to the horizontal displacement of the hand (the x 

coordinate). 

 

Figure 5: Nine iterations of hand horizontal movement 

This type of plot (Figure 5) shows the degree of variability 

in the motion, and at which point in space-time the variability 

occurs.  For instance, it can be noticed, in Figure 5, that there is 

less variability at the beginning of the motion than at the end of 

the motion. 

Using time series matching techniques (i.e., dynamic time 

warping), we can determine the degree of similarity between 

these nine movements. For instance, Table 1 shows that, on the 

one hand, iterations 4 and 5 (i.e., it4 and it5) are motions that 

were executed very similarly (i.e., DTW distance of 3491.214) 

relative to the others; on the other hand, iterations 3 and 9 (i.e., 

it3 and it9) appear to be very dissimilar (i.e., DTW distance of 

12,685.604). 

 

Table 1: Dynamic time warping distance 

B. Prescriptive 

Predictive techniques, such as time series forecasting, OLS 

and other smoothing techniques, will be used to generalize the 

conduct of any given motions.  These generalizations of 

movements will be used to create simulations.  

Constraints of motion will be incorporated using 

prescriptive techniques.  These techniques will be used to define 

motions that minimize or avoid the execution of harmful 

motions. 

These results, together with the generalizations from 

predictive information will be used to create simulations of the 

actions of laborers in the work environment to be applied 

activities to improve work practices, task design, and training 

of the labor force. 

V. CASE STUDY 

To illustrate the process described a case of a repetitive right-

arm movement, from left to right, for a right-handed person is 

shown.  The following analysis involves the movements of the 

markers attached to the right hand (one marker), the right wrist 

(two markers) and the right elbow (one marker).  The objective 

is to show how standard statistical process control tools may be 

used to evaluate the variation in motions of a worker. 

Besides tracking the motion of parts of the human body, along 

the right-to-left movement in this case; it is also the intention to 

track the movement of parts of the body in relation to other parts 

of the body.  Figure 6 shows the dynamics between the right-

elbow marker and the outer right-wrist marker. 

At the beginning of the motion, the wrist is located to the left of 

the elbow.  As the motion progresses, the wrist moves to the 

right of the elbow.  This pattern reveals, among other things, the 

point in time in which, characteristically, the wrist and the 

elbow coincide along the x-axis of movement.  These types of 

patterns could assist in identifying cases of overextension. 

 



 

Figure 6: Four Iterations of Right-Wrist/Right-Elbow Markers \n 

Along the X-Axis 

 

Figure 7: Four Iterations of Right-Wrist/Right-Elbow Markers Along 

the Z-Axis 

Figure 7 shows another aspect of the same motion, the 

movement along the z-axis.  This represents the relative vertical 

distance of the wrist and the elbow.  When plotted together, the 

relative vertical distance between the wrist and the elbow can 

be explored.  From the pattern of motion observed in Figure 7 

it can be inferred that elbow and wrist remain at a constant 

height, a pattern that is characteristic of a straight-line motion 

from right to left and little rotation on the shoulder or elbow. 

 

Figure 8: Comparison of Iterations of Elbow Markers Along the Z-

Axis 

A comparison between consecutive iterations is represented in 

Figure 8.  The inspection of consecutive iterations reveals how 

similar the motions are between them. 

Another objective is to monitor the changes in motions, perhaps 

the degradation of it, as time passes (Figure 9). 

 
Figure 9: Comparison of Iterations of Elbow Markers Along the X-

Axis 

 
Table 2: DTW Distances for Iterations of Hand Motion 

Since each iteration of motion generates a multidimensional 

time series (i.e., [x,y,z] coordinates), Dynamic Time Warping 

(DTW) Distance is used to compare the different iterations 



(Shokoohi-Yekta, et al., 2017; Müller, 2007).  Table 2 shows 

the DTW distances for nine iterations of hand motion.  These 

distances seem to be distributed Gaussian (Figure 10); perhaps 

implying the existence of a “typical” distance from the first 

iteration (h.it2). 

Figure 10: Distribution of the DTW Distances Between Iterations – 

Hand Motion 

Given that the distribution of the distances from the first 

iteration (h.it2) seems to be Gaussian, the data was analyzed 

using a control chart.  The experiment shows that the deviation 

between iteration 2 and iteration 3 is atypically large; as are the 

distances between iteration 2 and iterations 4 and 6, which are 

atypically close to iteration 2. 

 

Figure 11: Control Chart for Right-Hand Motion 

Table 3 and Figure 11 show DTW distances between the first 

iteration (e.it.2) and the other eight iterations of elbow motion.   

Table 3: DTW Distances for Iterations of Elbow 

This time, the distribution of DTW seems to depart from a 

Gaussian distribution. 

Figure 11: Distribution of the DTW Distances Between Iterations – 

Elbow Motion 

The control chart in Figure 12 reveals that, most iterations are 

relatively close to the first one, with the exception of iterations 

3 and 7. 

 

Figure 12: Control Chart for Right Elbow 
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