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Abstract

A dynamic domination problem in graphs is considered in which an infinite sequence
of attacks occur at vertices with mobile guards; the guard at the attacked vertex is
required to vacate the vertex by moving to a neighboring vertex with no guard. Other
guards are allowed to move at the same time, and before and after each attack, the
vertices containing guards must form a dominating set of the graph. The minimum
number of guards that can defend the graph against such an arbitrary sequence of
attacks is called the m-eviction number of the graph. In this paper, the m-eviction
number is determined exactly for small grids and upper bounds are given for all m ≥
n ≥ 8.

1 Introduction

In this paper, we shall be concerned with defending a finite, undirected graph G = (V,E)
against an infinite sequence of attacks that occur, one at a time, at vertices. This is sometimes
also called protecting the graph. A variety of graph protection problems and models have been
considered in the literature of late, see the survey [16]. In the usual protection model, each
attack is defended by a mobile guard that is sent to the attacked vertex from a neighboring
vertex.

A dominating set of graph G is a set D ⊆ V such that for each u ∈ V −D, there exists
an x ∈ D adjacent to u. The minimum cardinality amongst all dominating sets of G is the
domination number, γ(G). For any dominating set D and x ∈ D, we say that v ∈ V − D
is an external private neighbor of x if v is adjacent to x but to no other vertex in D. A
dominating set can be viewed as being able to protect a graph against a single attack at a
vertex.

For each i ≥ 1, let Di ⊆ V be a dominating set with one guard located at each vertex of
Di. A vertex is said to be occupied if a guard is located on it and unoccupied otherwise. At
most one guard can be located on any vertex at any one time. In the eternal dominating set
problem, we aim to protect a graph against any infinite sequence of attacks at vertices. In
this problem, we may assume that each attack occurs at an unoccupied vertex. Following
an attack at a vertex ri ∈ V − Di, one or several guards (depending on the exact nature
of the model) move along edges to adjacent vertices, with one guard moving to ri, thus
occupying the vertices in the set Di+1. This is called defending an attack. Once the guards
move to configuration Di+1, the next attack, at a vertex ri+1 ∈ V −Di+1, occurs and must
be defended.

The minimum number of guards required to protect the graph, i.e., to defend it against
each attack in any infinite sequence of attacks, is called the eternal domination number
γ∞(G) (if only one guard is allowed to move at a time), or the m-eternal domination number
γ∞m (G) (if any number of guards are allowed to move in response to an attack). The eternal
and m-eternal domination problems were introduced in [2] and [9], respectively. One may
think of these eternal domination problems as two-player games played between players that
alternate turns: a defender, who chooses each Di (and so the defender can be thought of
as moving first, in that they choose the initial dominating set), and an attacker, who then
chooses each ri. The defender wins the game if they can successfully defend any sequence
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of attacks and the attacker wins otherwise. For example, one can observe that γ∞m (C5) = 2
and γ∞(C5) = 3. See [7] for the combinatorial game variant of the eternal dominating set
problem.

The primary focus of this paper is on a variation of the eternal domination problem known
as the eternal dominating set eviction problem, or simply the eternal eviction problem. In
this problem, each attack in the infinite attack sequence occurs at a vertex ri ∈ Di, i.e.,
each attack occurs at an occupied vertex. When a vertex is attacked, one or several guards
(again, depending on the nature of the model) move along edges to adjacent vertices, with
the guard at ri moving to an unoccupied neighbor and no guard moving to ri at the same
time, so as to form the guard set Di+1. That is, the guard at an attacked vertex is evicted
from that vertex.

We emphasize the following three facts in the eviction problem: (i) Di is a dominating
set, (ii) ri ∈ Di − Di+1 and (iii) if ri has no unoccupied neighbor, then no action is taken
on the part of the defender. The minimum number of guards that can protect the graph
according to this model is the eternal eviction number e∞(G) (if only the guard on ri moves)
or the m-eternal eviction number e∞m (G) (if the guard on ri moves and all other guards may
also move to neighboring vertices, if they so choose). The latter model is sometimes called
the all-guards move model. In the latter model, each Di is called an m-eternal eviction set
of G, or sometimes just an eviction set, for short. It is important to remember that in the m-
eternal eviction problem, the attacked vertex must remain unoccupied at least until the next
vertex is attacked. It is known from [14] that γ(G) ≤ e∞m (G) ≤ α(G), where α(G) denotes
the independence number of G. Further, γ∞m (G) and e∞m (G) are not directly comparable,
as γ∞m (K1,m) = 2 < e∞m (K1,m) = m when m > 2, yet γ∞m (G) > e∞m (G) for the graph G
consisting of K2,5 with an edge added between the two vertices in the maximal independent
set of cardinality two.

As another simple example, observe that

e∞m (Pn) = γ(Pn) =
⌈n

3

⌉
when n 6≡ 0 (mod 3) (1)

and
γ(Pn) =

⌈n
3

⌉
< e∞m (Pn) =

⌈n
3

⌉
+ 1 when n ≡ 0 (mod 3). (2)

The eternal eviction problems were introduced in [14] and further studied in [15]. Moti-
vated by the study of domination in grid graphs in, for example, [1, 6, 11, 13] and eternal
domination in grid graphs, see [8, 10], we consider the m-eternal eviction problem in grid
graphs. Recall that the m × n grid graph is the Cartesian product of paths on m and n
vertices, which we denote as Pm �Pn.

2 Eviction on 2× n and 4× n grids

In this section, we shall determine the m-eternal eviction number of 2× n and 4× n grids.
In achieving these results, it was discovered that one of the proofs used in describing the
domination numbers of 4 × n grids in [13] is incorrect, though the result is correct. For
completeness, we present a corrected proof in the appendix.
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A total-switch of a dominating set D into a dominating set D′ is a simultaneous replace-
ment of all vertices in D, where each vertex vi ∈ D is replaced by a neighbor zi ∈ D′, zi ∈
N(vi) such that |D| = |D′| and D ∩ D′ = ∅. Total-switches were introduced in [3] in the
context of independent sets, rather than dominating sets. Observe that for a total switch to
occur, it must be that D and D′ are disjoint dominating sets with a perfect matching between
them. Though disjoint dominating sets have been studied in the literature, see for example
[12], it appears the concept of having a matching between them has not been studied. Let
DDm(G) denote the size of smallest disjoint dominating sets D and D′ such that there is a
perfect matching between them. If G has no such sets, take K1,m, m ≥ 2, for example, then
define DDm(G) = ∞. It is obvious that e∞m (G) ≤ DDm(G), for all graphs G. Note that
DDm(G) and α(G) are, in general, not comparable, since there exist graphs for which each
exceeds the other. The graph G = C4 is an example of a graph where e∞m (G) = DDm(G).
An example of a graph G with e∞m (G) = 3 < 4 = DDm(G) is given in Figure 1. It can be
shown using the concepts of [14, 15] that for any tree T , if DDm(T ) is finite (which it is not
always), then e∞m (T ) = DDm(T ) (the proof of this requires details beyond the scope of this
paper). In Section 5, we ask whether this is the case for all grid graphs.

Figure 1: Graph G with e∞m (G) = 3 < 4 = DDm(G).

Theorem 1 For all n ∈ Z+, e∞m (P2 �Pn) = γ(P2 �Pn) = dn+1
2
e.

Proof: From [13], we know γ(P2 �Pn) = dn+1
2
e. Place γ guards on vertices of P2 �Pn as

indicated by the squares in Figure 2. When a vertex with a guard is attacked, the guards
perform a total-switch: guards in row 1 move to row 2 and vice versa.

...

...

...

...

...

...

...

...

n ⌘ 0 (mod 4) n ⌘ 1 (mod 4)

n ⌘ 2 (mod 4) n ⌘ 3 (mod 4)

Figure 2: Eviction sets on 2× n grids.

It follows that e∞m (P2 �Pn) = DDm(P2 �Pn) for all n ≥ 1.
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The value of γ(P4 �Pn) is known to be n+ 1 for n ∈ {1, 2, 3, 5, 6, 9} and n otherwise, see
either [6, 11, 13] or the appendix. Table 1 in [1] is a convenient presentation of γ(Pm �Pn)
for small values of m,n.

Lemma 2 For all n = 8, 10, 11, 12 and n ≥ 14, γ(P4 �Pn) = e∞m (P4 �Pn).

Proof: From [13], we know γ(P4 �Pn) = n for n = 8 and n ≥ 10. Suppose n ≡ 0 (mod
4): For each 4 × 4 sub-grid, place guards on vertices as shown in Figure 3 (a); then four
guards dominate each 4× 4 sub-grid. If a vertex is attacked, the guards move as illustrated
by arrows in Figure 3 (a): a total-switch is performed. Note that a total-switch of the entire
4× n grid is also possible.

Suppose n ≡ 2 (mod 4): Let n = 4k + 2 and consider a decomposition of the 4× n grid
into one 2 × 4 sub-grid and k 4 × 4 sub-grids where the 2 × 4 sub-grid is adjacent to two
4 × 4 sub-grids. In each 4 × 4 sub-grid, place guards on vertices as shown in Figure 3 (a)
and in the 2× 4 sub-grid, place guards on vertices as shown in Figure 3 (b). Note that each
sub-grid is dominated. If a vertex is attacked, then all guards move according to the arrows
shown in Figure 3 (b); performing a total-switch of the grid.

Suppose n ≡ 3 (mod 4): This is similar to the case when n ≡ 2 (mod 4) and the guard
shift pattern is shown in Figure 3 (c). Observe that we have three guards in the middle 4×3
sub-grid although γ(P3 �P4) = 4. Thus when a vertex is attacked, we perform a total-switch
on the entire 4× n grid using the pattern shown in Figure 3 (c). Upon the next attack, we
perform a total-switch back to the initial guard configuration.

(a) (b)

(c)

Figure 3: Guard configurations for n ≡ 0, 2, 3 (mod 4) for the 4× n grid.

Suppose n ≡ 1 (mod 4): This is similar to the case when n ≡ 2 (mod 4), noting that we
configure the “middle” sub-grid as a 4 × 9 sub-grid as shown in Figure 4. Observe that we
locate nine guards at vertices in the middle 4× 9 sub-grid. Thus when a vertex is attacked,
we perform a total-switch on the entire 4×n grid using the pattern shown in Figure 4. Upon
the next attack, we perform a total-switch back to the initial guard configuration.
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FIGURE 4

Figure 4: Guard configuration for n ≡ 1 (mod 4) for the 4× n grid.

To complete the analysis of 4 × n grids, we must consider the cases when n ≤ 7, n = 9
and n = 13. The cases when n ≤ 2 are trivial. The case when n = 3 can be handled by
partitioning the 4× 3 grid into two 2× 3 grids and using two guards in each. The case when
n = 4 is identical to the n ≡ 0 (mod 4) case above.

When n = 5, partition the grid into a 4× 4 and a 4× 1 grid, using four and two guards in
each, respectively.

When n = 6, partition the grid into a 4× 4 and a 4× 2 grid, using four and three guards in
each, respectively.

When n = 7, P4 �P7 has two disjoint dominating sets of cardinality seven that are joined
by a perfect matching (vertices 2 and 6 on row 1, vertex 4 on row 2, vertices 1 and 7 on
row 3, and vertices 3 and 5 on row 4 are one of the sets and the other can be obtained by a
horizontal reflection).

When n = 9, partition the grid into two 4× 4 grids and one 4× 1 grid, using four guards in
the 4× 4 grids and two guards in the 4× 1 grid.

When n = 13, P4 �P13 has two disjoint dominating sets of cardinality 13 that are joined by
a perfect matching (see the first 13 columns of the 4× n grid shown in Figure 3.1 of [4] and
its horizontal reflection).

Thus we have the following result.

Theorem 3 e∞m (P4 �Pn) = DDm(P4 �Pn) = γ(P4 �Pn) =

{
n+ 1 if n ∈ {1, 2, 3, 5, 6, 9}
n otherwise.

3 Eviction on 3× n grids

The exact value of the m-eternal domination number has yet to be determined exactly for
all 3 × n grids, see [8, 10, 16]. Thus it is not surprising that the analysis of the m-eternal
eviction number of 3×n grids is slightly more involved than that seen in the previous section.

Table 1 gives the values of domination parameters for 3× n grids for some small values
of n. The values for e∞m for n = 1, 2, 3 are trivial to determine while the values of e∞m for
n ≥ 4 are determined in this section. The values for γ∞m are taken from [8, 10]. Note that
Table 1 illustrates that there are some values of n for which γ 6= γ∞m 6= e∞m .
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3× n γ γ∞m e∞m
3× 1 1 2 2
3× 2 2 2 2
3× 3 3 3 3
3× 4 4 4 4
3× 5 4 5 5
3× 6 5 6 6
3× 7 6 7 6

3× n γ γ∞m e∞m
3× 8 7 8 7
3× 9 7 8 8
3× 10 8 9 9
3× 11 9 10 10
3× 12 10 11 10
3× 13 10 12 11

Table 1: Domination parameters for small n.

Theorem 4 For n ≥ 4 and n ≡ 0 (mod 4), e∞m (P3 �Pn) = γ(P3 �Pn) = d3n+1
4
e.

Proof: Let n = 4k for k ∈ Z+. From [13], γ(P3 �P4k) = d3(4k)+1
4
e = 3k + 1. Consider the

configuration of guards indicated by squares in Figure 5(a). The graph P3 �P4k is decomposed
into k vertex disjoint 3× 4 sub-grids and each 3× 4 sub-grid is assigned 3 guards, with the
exception of the right-most 3×4 sub-grid, which is assigned 4 guards. Clearly the guards form
a dominating set on P3 �P4k. In (a), given an attack at any vertex with a guard, the guards
can move to (b). As the set of vertices with guards in Figure 5(a) and Figure 5(b) are disjoint,
each attack can be handled by a total-switch. Thus, e∞m (P3 �P4k) ≤ 3k + 1 = γ(P3 �P4k).

...

...

...

...

(a)

(b)

FIGURE 5

Figure 5: A total switch on the 3× 4k grid.

Lemma 5 For n ≥ 5 and n ≡ 1 (mod 4), e∞m (P3 �Pn) ≤ γ(P3 �Pn) + 1.

Proof: Let n = 4k+ 1 for k ∈ Z+. From [13], γ(P3 �P4k+1) + 1 = d3(4k+1)+1
4

e+ 1 = 3k+ 2.
Consider the configuration of 3k + 2 guards indicated by squares in Figure 6(a). Given an
attack at any vertex with a guard in (a), observe that in response, the guards can move to
the configuration in (b) or a reflection (over the horizontal axis) of (b). The intersection
between the dominating sets given in (a) and (b) contains only one vertex: the top vertex in
column 3 of the second block. If that vertex is attacked, then the guards can move from (a)
to a reflection (over the horizontal axis) of (b), instead of moving to (b). Otherwise, guards
can move from (a) to (b). Consequently, e∞m (P3 �P4k+1) ≤ 3k + 2 = γ(P3 �P4k+1) + 1.
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...(a)

(b) ...
...

...

FIGURE 6

Figure 6: Eviction sets on the 3× (4k + 1) grid.

Lemma 6 Let D be a dominating set of P3 �Pn. For any ` ∈ {1, 2, . . . , bn/4c}, there are at
least 3` guards in the first (and last) 4` columns.

Proof: Let D be a dominating set of P3 �Pn and let ` ∈ {1, 2, . . . , bn/4c}. A guard is
located at each vertex of D. Consider the first 4` columns of P3 �Pn. Since the vertices of
column 4` could be dominated by guards in column 4`+1, there must be at least γ(P3 �P4`−1)
guards in the first 4` columns of P3 �Pn in order for D to form a dominating set. From [13],

γ(P3 �P4`−1) = d3(4`−1)+1
4
e = 3` and the result follows.

Observation 7 Let H3 be a subgraph induced from P3 �P3 by the deletion of a vertex of
degree 2 or 3. Then γ(H3) ≥ 3.

The two possibilities for graph H3 are given in (a) and (b) of Figure 7. The result can
be easily verified by inspection.

(a) (b) (c)

FIGURE 7

Figure 7: The graphs H3 and H4.

Lemma 8 Let H4 be the subgraph induced from P3 �P4 by the deletion of a vertex of degree
2, as shown in Figure 7(c). Then γ(H4) ≥ 4.

Proof: Since ∆(H4) = 4, it follows that γ(H4) ≥ 3. Suppose to the contrary that D is a
dominating set of H4 with |D| = 3.

If column 1 contains no vertex of D, then both the middle and bottom vertices of column
2 must be in D. This leaves one vertex of D to dominate both the top vertex of column 3
and the bottom vertex of column 4, which is not possible.

If column 1 contains 1 vertex of D, then by Observation 7, at least 3 vertices of D must
be in columns 2, 3 and 4, which contradicts |D| = 3.

If column 1 contains 2 vertices of D, then one vertex of D must dominate both the top
vertex of column 3 and the bottom vertex of column 4, which is not possible.
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Lemma 9 Let D be a minimum dominating set of P3 �Pn. If for some i ≥ 1, at most one
vertex in column 4i+ 1 is occupied by a guard and there are exactly 3i guards in the first 4i
columns, then a guard must occupy the middle vertex in column 4i+ 1.

Proof: Let D be a minimum dominating set of P3 �Pn. We locate one guard at each vertex
of D. Suppose that for some i ≥ 1, there is at most one guard in column 4i+ 1 and exactly
3i guards in the first 4i columns. We first observe there must be a guard in column 4i + 1.
Otherwise, because γ(P3 �P4i) = d3(4i)+1

4
e = 3i+ 1 by [13], we have a contradiction as there

are at most 3i guards in the first 4i columns. Thus, there is exactly one guard in column
4i+ 1.

Suppose i > 1 (the i = 1 case is considered later) and for a contradiction, assume the
guard in column 4i + 1 is not located at the middle vertex; w.l.o.g. the guard is located at
the top vertex. By Lemma 6, there are at least 3(i− 1) guards in the first 4(i− 1) columns.
This leaves at most 3 guards in columns 4i − 3, 4i − 2, 4i − 1, 4i. It is easy to see that 2
guards are not sufficient to dominate the middle and bottom vertices of column 4i as well
as the three vertices in columns 4i− 1 and 4i− 2. Thus, there must be 3 guards in columns
4i− 3, 4i− 2, 4i− 1, 4i. Since one guard cannot dominate the middle and bottom vertices in
both columns 4i − 1 and 4i, there can be at most one guard in column 4i − 3. Finally, we
observe there cannot be a guard located at the middle vertex of column 4i− 3 because two
guards cannot dominate the top and middle vertices of column 4i− 2, the three vertices of
column 4i− 1 and the middle and bottom vertices of column 4i.

Consequently, there are exactly 3(i− 1) guards in the first 4(i− 1) columns and there is
exactly one guard in column 4(i− 1) + 1 = 4i− 3 and the guard is not located at the middle
vertex. Applying the argument repeatedly, we conclude there are exactly 3 guards in the
first 4 columns and there is exactly one guard in column 5 and the guard in column 5 is not
located at the middle vertex. By Lemma 8, it is not possible for 3 guards to dominate the
vertices in the first 3 columns as well as the middle and w.l.o.g. bottom vertices of column
4. Therefore, our assumption that the guard in column 4i+ 1 was not located at the middle
vertex was false.

Lemma 10 For n ≥ 5 and n ≡ 1 (mod 4), e∞m (P3 �Pn) > γ(P3 �Pn).

Proof: Let n = 4k + 1 for some k ∈ Z+. Assume to the contrary that e∞m (P3 �Pn) =
γ(P3 �Pn). By [13], γ(P3 �Pn) = d3n+1

4
e = 3k + 1. Consider 3k + 1 guards placed at the

vertices of a minimum dominating set of P3 �Pn.
By Lemma 6 (applied from right-to-left), there must be at least 3k guards in the last 4k

columns. This leaves at most one guard in column 1.
First, suppose there are no guards in column 1. Then there must be three guards in

column 2. By Lemma 6, there are at least 3k− 3 guards in the last 4k− 4 = n− 5 columns.
This leaves at most one guard in columns 3, 4, 5. Obviously then, one guard must be located
at the middle vertex of column 4 and exactly 3k − 3 guards must be located in the last
4k−4 = n−5 columns. Consequently, there must be a guard at the top and bottom vertices
of column 6, else the vertices of column 5 are not all dominated. This forces at least six
guards to be located in the first six columns.
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By Lemma 6, there are at least 3k− 6 guards in the last 4k− 8 = n− 9 columns. Having
seven guards in the first six columns would result in no guards being in each of columns 7, 8, 9,
which cannot happen. Therefore, there are exactly six guards in the first six columns, exactly
3k− 6 guards in the last n− 9 columns and exactly one guard in columns 7, 8, 9. Obviously,
that guard must be located at the middle vertex of column 8. So there is no guard in column
9. Therefore, the 3k−6 guards in the last n−9 columns must dominate all vertices in the last
n−9 columns. As γ(P3 �Pn−9) = γ(P3 �P4k−8) = (4k−8)−b4k−9

4
c = (4k−8)−(k−3) = 3k−5,

this cannot happen. Therefore, there must be a guard in column 1.
By Lemma 9, the guard in column 1 is located at the middle vertex. By attacking that

vertex, the guard moves away and we are left without a dominating set.

From Lemma 10 and Lemma 5, we immediately get the following.

Corollary 11 For n ≥ 5 and n ≡ 1 (mod 4), e∞m (P3 �Pn) = γ(P3 �Pn) + 1 = d3n+5
4
e.

By adding a guard in the same location in the second block of graphs in Figures 6 (a)
and 6 (b), adjacent to the (unique) guard the two configurations have in common, one can
see that the following is true.

Observation 12 DDm(P3 �Pn) ≤ γ(P3 �Pn) + 2 when n ≡ 1 (mod 4).

The following observation was stated in [10] for the eternal domination problem, but
clearly applies to the eviction problem as well.

Observation 13 If e∞m (P3 �Pn) ≤ t and e∞m (P3 �Pm) ≤ r, then e∞m (P3 �Pm+n) ≤ t+ r.

Lemma 14 For n ≡ 2 (mod 4) or n ≡ 3 (mod 4), e∞m (P3 �Pn) ≤ γ(P3 �Pn) + 1.

Proof: Suppose n = 4k + 2 for some integer k ∈ Z+. Then

e∞m (P3 �P4k+2) ≤ e∞m (P3 �P4k) + e∞m (P3 �P2) by Observation 13

≤ (3k + 1) + 2 by the proof of Theorem 4 and Table 1

= γ(P3 �P4k+2) + 1 from [13].

Suppose n = 4k+ 3 for some integer k ∈ Z+. Using Observation 13, the proof of Theorem 4,
Table 1 and [13], the desired result can be obtained for e∞m (P3 �P4k+3).

Lemma 15 For n ≥ 6 and n ≡ 2 (mod 4), e∞m (P3 �Pn) > γ(P3 �Pn).

Proof: Let n = 4k + 2 for some k ∈ Z+. Suppose, by way of contradiction, that
e∞m (P3 �P4k+2) = γ(P3 �P4k+2). By [13], γ(P3 �P4k+2) = 3k + 2. We will show that every
minimum dominating set on P3 �P4k+2 contains the middle vertex of column 1. Then in the
eviction problem, we simply attack the middle vertex of column 1 to show e∞m (P3 �P4k+2) >
γ(P3 �P4k+2).

Suppose there exists a minimum dominating set D of P3 �P4k+2 that does not include
the middle vertex of column 1. We locate one guard at each vertex of D. Since there is no
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guard located at the middle vertex of column 1, we observe there must be at least two guards
located at vertices in the first two columns. By Lemma 6, there are at least 3k guards in the
last 4k columns, which leaves at most two guards in columns 1 and 2. Thus in D, there are
exactly two guards in columns 1 and 2. Observe that at least one guard must be located in
column 1 (otherwise a vertex of column 1 is not dominated). This leaves at most one guard
in column 2. Applying Lemma 9 from the right-to-left forces a guard to be located at the
middle of column 2. Thus, there is one guard located at either the top or bottom vertex of
column 1, one guard located at the middle vertex of column 2 and 3k guards located in the
last 4k columns. Observe that either the top vertex or the bottom vertex of column 1 is not
dominated.

Thus, a guard must be located at the middle vertex of column 1 in every minimum
dominating set. If e∞m (P3 �P4k+2) = γ(P3 �P4k+2), then any minimum eviction set contains
the middle vertex of column 1. Attacking that vertex yields a contradiction.

Corollary 16 For n ≥ 6 and n ≡ 2 (mod 4), e∞m (P3 �Pn) = γ(P3 �Pn) + 1 = d3n+5
4
e.

Based on the previous, the following is easy to see. For the upper bound, note that
we can perform a total-switch in the first n − 2 columns and a total-switch in the last two
columns.

Observation 17 For n ≥ 6 and n ≡ 2 (mod 4), DDm(P3 �Pn) = γ(P3 �Pn) + 1.

From [13], we know γ(P3 �P7) = 6. Consider the dominating set shown in Figure 8 (a).
A total switch can be performed (indicated by the arrows) resulting in the dominating set
shown in Figure 8 (b). Thus, the following observation can be made.

(a) (b)

Figure 8: A total-switch for P3 �P7.

Observation 18 e∞m (P3 �P7) = DDm(P3 �P7) = γ(P3 �P7) = 6.

Lemma 19 For n ≥ 11 and n ≡ 3 (mod 4), e∞m (P3 �Pn) > γ(P3 �Pn).

Proof: Let n = 4k + 3 for some integer k ≥ 2. Suppose, by way of contradiction, that
e∞m (P3 �P4k+3) = γ(P3 �P4k+3); by [13], γ(P3 �P4k+3) = 3k + 3. We aim to show that if
e∞m (P3 �P4k+3) = 3k + 3, then a guard must be located at the middle vertex of column 1 in
every minimum eviction set. An attack at the middle vertex of column 1 will then yield a
contradiction.
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Assume there exists a minimum eviction set D of P3 �P4k+3 that does not include the
middle vertex of column 1. By Lemma 6, there are at least 3k guards in the last 4k columns,
so there are either 2 or 3 guards in the first three columns of D.

First, suppose there are two guards in the first three columns. Obviously, a guard must
be located at a vertex of column 1, w.l.o.g., a guard is located at the top vertex of column 1.
Then a guard must be located at the bottom vertex of column 1 or column 2. If this guard
is on the bottom vertex of column 1, then the middle vertex on column 2 is not dominated
(since there are only two guards in the first three columns). Therefore, assume there is a
guard on the bottom vertex of column 2. As only one vertex of column 3 is dominated by
the guards in the first two columns, guards must be located at the top and middle vertices of
column 4 (to dominate vertices in column 3). By Lemma 6, there are at least 3k− 3 guards
in the last 4k − 4 columns, which implies there are at most 4 guards in columns 4, 5, 6, 7.
Observe there must be exactly 4 guards in columns 4, 5, 6, 7 as one guard cannot dominate
both the bottom vertex of column 5 and the top vertex of column 6. As a result, there are
exactly 3k − 3 guards in the last 4k − 4 columns and there is at most one guard in column
7 (otherwise, the bottom vertex of column 5 is not dominated). By Lemma 9, a guard must
be located at the middle vertex of column 7 (see Figure 9 (a)). However, this leaves only
one guard to dominate both the bottom vertex of column 5 and the top vertex of column 6,
which is not possible.

5 6 74321 5 6 74321

(a) (b)

FIGURE 9

Figure 9: A guard at the top vertex of column 1 in the 3× 4k + 3 grid.

Therefore, there must be 3 guards in the first 3 columns. Observe in this case that there
is at most 1 guard in column 3 (otherwise, not all vertices in column 1 are dominated). By
Lemma 9, applied from right-to-left, a guard must be located at the middle of column 3.
As there are 3 guards in the first 3 columns and at least 3k − 3 guards in the last 4k − 4
columns, there are at most 3 guards in columns 4, 5, 6, 7. Further, as 2 vertices of column 4
and 3 vertices in each of columns 5 and 6 must be dominated, exactly 3 guards are located in
columns 4, 5, 6, 7 by Observation 7. There is at most one guard in column 7, otherwise one
guard must dominate 2 vertices in column 4 and 3 vertices in column 5, which is not possible.
By Lemma 9, applied from right-to-left, a guard is located at the middle of column 7. This
forces the remaining guards to be located at the top and bottom of vertices in column 5 as
shown in Figure 9 (b).

We now consider an attack at the middle vertex of column 7. If the guard at the middle
vertex of column 7 in D moves to the top vertex of column 7, the bottom vertex of column
7 or the middle vertex of column 6, then another guard must move to column 7 (otherwise,
a guard must be located at the middle vertex of column 7 by Lemma 9). However, this is
not possible as there are no guards in column 6 in D and no guard can move from column
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8 to column 7 (as there must be at least 3k − 3 guards in the last 4k − 4 columns). Thus,
the guard in column 7 in D moves to column 8.

However, such a move leaves the middle vertex of column 6 not dominated. Consequently,
a guard in column 5 in D must move to the middle of column 5 or to a vertex of column
6 in order to dominate the middle vertex of column 6. Suppose, w.l.o.g., the guard at the
top vertex of column 5 in D moves to the middle vertex of column 5. This leaves the top
vertex of column 6 not dominated and no guard can move to a neighbor of the top vertex
of column 6. Therefore, w.l.o.g., the guard from the top vertex of column 5 moves to the
top vertex of column 6. Observe the guard at the bottom vertex of column 5 must move
to column 4. Otherwise, by Lemma 9, the guard must move to the middle of column 5 (as
there are exactly 3 guards in the first 4 columns and at most one guard in column 5). But
this leaves the bottom vertex of column 6 not dominated. Thus, the guard moves from the
bottom of column 5 to column 4. However, this again leaves the bottom vertex of column 6
not dominated.

Consequently, a guard is located at the middle vertex of column 1 in every minimum
eviction set.

Corollary 20 For n ≥ 11 and n ≡ 3 (mod 4), e∞m (P3 �Pn) = γ(P3 �Pn) + 1 = d3n+5
4
e.

Observation 21 DDm(P3 �Pn) = γ(P3 �Pn) + 1 when n ≥ 11 and n ≡ 3 (mod 4).

Based on the previous lemma, both Corollary 20 and Observation 21 are easy to see
(since DDm forms an upper bound for e∞m ). For the upper bound of Observation 21, let
n = 4k + 3 ≥ 11 and note that we can perform a total-switch in P3 �P4k by the proof of
Theorem 4 and it is trivial to observe that we can perform a total-switch in P3 �P3. Thus,
we can perform a total-switch in P3 �P4k+3 using 3k + 3 = γ(P3 �P4k+3) guards.

4 Eviction on m× n grids

In [4], it was shown that for m ≥ n ≥ 8,

γ(Pm �Pn) ≤
⌊(n+ 2)(m+ 2)

5

⌋
− 4. (3)

For n ≥ m ≥ 16, equality in this bound was shown in [11]. A convenient table with the
values of γ(Pm �Pn) for small values of m,n can be found in [1]. The domination number of
Pm �Pn is a trivial lower bound for e∞m (Pm �Pn). In Theorem 22, we provide an upper bound
on e∞m (Pm �Pn) which differs from the lower bound by approximately n/5.

A perfect dominating set is a set S ⊆ V such that for all v ∈ V , |N [v] ∩ S| = 1. We use
the description given in [4] of a perfect dominating set on an infinite grid graph where the
vertices are labeled according to their Cartesian coordinates: for any t ∈ {0, 1, 2, 3, 4}, the
vertices in the perfect dominating set are given by the set

St =
{

(x, y) | y =
1

2
x+

5

2
s+ t and x, y, s ∈ Z

}
. (4)

For t = 0, the vertices of a perfect dominating set of the infinite grid graph are indicated in
Figure 10 (increasing the value of t simply translates the dominating set).
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(0,0)

Figure 10: A perfect dominating set on the infinite grid.

Theorem 22 For m ≥ n ≥ 8,

e∞m (Pm�Pn) ≤
⌊(n+ 2)(m+ 3)

5

⌋
− 4.

Proof: To obtain the result, we begin by noting the upper bound of (3), initially given
by [4], for m ≥ n ≥ 8. In the initial part of the proof, we set out to show for m ≥ n ≥ 8,

e∞m (Pm�Pn) ≤
⌊(n+ 2)(m+ 3)

5

⌋
.

We later improve that bound by four. First, we describe the location of the guards that form
the initial dominating set, i.e, the eviction set, and then show that these guards can defend
against any sequence of attacks.

Consider the sub-grid Pm �Pn of the infinite grid graph, induced by vertices{
(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
.

For i ∈ [m] and j ∈ [n], if vertex (i, j) is in the perfect dominating set of the infinite grid
graph defined by St in (4), then a guard initially occupies vertex (i, j) in Pm �Pn. Label
these guards as follows: guards at vertices of the form (m, j) for j ∈ [n] of Pm �Pn will
be referred to as white guards and will be colored white in figures. All other guards that
have been placed on vertices of Pm �Pn so far will be referred to as core guards, also known
as black guards, and will be colored black in figures. Observe that no two core guards are
adjacent.

In the remainder of the proof, we will refer to vertex (i, j) as being in column i and row
j (again, following the Cartesian coordinate convention). Some vertices in row 1 and row n
of Pm �Pn are not yet dominated. For i ∈ [m], if vertex (i, n + 1) (or (i, 0)) in the infinite
grid graph is in the perfect dominating set St defined in (4), then we place a core (black)
guard at vertex (i, n) (or (i, 1)) in Pm �Pn. An example of this is shown in Figure 11 (a).

Some vertices in column 1 and column m of Pm �Pn are not yet dominated. For j ∈ [n],
if vertex (0, j) in the infinite grid graph is in the perfect dominating set St defined by (4),
then we place a white guard at vertex (1, j) in Pm �Pn (provided no guard has already been
placed on that vertex in Pm �Pn). For j ∈ [n], if vertex (−1, j) or (m + 1, j) in the infinite
grid graph is in the perfect dominating set St defined by (4), then we place a grey guard at
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vertex (1, j) or (m, j) respectively in Pm �Pn (provided no guard has already been placed
on that vertex in Pm �Pn). An example of the placement of black, white and grey guards
is illustrated in Figure 11 (a). Note that the arrows in this and subsequent figures do not
indicate guard movements, rather, the arrows indicate how guards of St outside the bounds
of Pm �Pn are mapped to white or grey guards.

(a)
(1,1) (1,1)

(b)

Figure 11: Examples of placing core (black), white and grey guards in P16 �P12.

Two vertices u, v are said to be horizontally adjacent if u is a neighbor to the left or right
of v, in the usual drawing of Pm �Pn. By the placement of guards, no black, white or grey
guards are horizontally adjacent, except perhaps at the corner vertices. We leave the careful
examination of the corners until the end of the proof.

To complete the initial part of the proof, we now show that given an attack at any vertex,
the guards can move to a dominating set that leaves the attacked vertex without a guard.
To do this, the guards will essentially be positioned in two dominating sets. The set of
black guards are called the core. If a vertex with a black guard is attacked, then the core
shifts to the right; that is, each black guard moves to a neighboring vertex to the right.
In the resulting dominating set, we say the core is on the right. In general, the white and
grey guards do not move unless attacked. As an example, consider the positions of guards
described in Figure 11 (a); suppose any vertex of P16 �P12 with a black guard is attacked.
The black guards shift to the right and their new positions are shown in Figure 11 (b). If
the core is on the right and a vertex with a black guard is attacked, then the core shifts to
the left. In Figure 11 (b), if a vertex with a black guard is attacked, then the core shift to
the left, resulting in the configuration of guards displayed in Figure 11 (a).

Now consider the situation when a vertex with a white or grey guard is attacked. First,
suppose a vertex with a grey guard is attacked. Without loss of generality, the grey guard g
occupies a vertex in column 1 of Pm �Pn. If the core is on the left, then guard g dominates
the vertex at which it is located, but all neighbors are dominated by other guards. Thus, we
move the grey guard to any unoccupied neighboring vertex and no other guards move (if the
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grey guard has no unoccupied neighbor, then per the definition of the eviction problem, no
action is necessary). If the core is on the right, then we shift the core to the left and move
the guard g to any unoccupied neighbor as in the previous case. In the subsequent attack,
g will simply move back to its previous position.

Second, suppose a vertex with a white guard is attacked. Without loss of generality, the
white guard w occupies a vertex in column 1 of Pm �Pn. Consider the special case when
w has at most one external private neighbor (i.e. a neighboring vertex which is dominated
by no other guard). Then w moves to that neighbor, otherwise it moves to any unoccupied
neighbor.1 If the core is on the right, then the core shifts to the left, otherwise no guards
other than w move. In the subsequent attack, w will simply move back to his previous
position.

Now consider the general case in which w might have more than one external private
neighbor. Suppose w is located at vertex (1, j). If the core is on the left, then there is a
black (core) guard b located at either (2, j+1) or (2, j−1) (this is due to the fact that w was
placed at (1, j) because (0, j) was in the perfect dominating set on the infinite grid graph).
Then two neighbors of (i, j) are dominated by guard b. As w has at most three neighbors,
since it located in column 1, it has at most one external private neighbor and we have the
previous situation. If the core is on the right, then the core moves to the left and we have the
previous situation. In the subsequent attack, w again moves back to its previous position.

Thus, we have shown the black, white and grey guards form a dominating set that can
defend against any sequence of attacks. Returning to the positions of guards in the infinite
grid graph, observe that the black, white and grey guards used in Pm �Pn correspond to the
vertices in a perfect dominating set of an (m+ 3)× (n+ 2) sub-grid of the infinite grid graph
in which Pm �Pn has been embedded. From [4], this number of guards is⌊(n+ 2)(m+ 3)

5

⌋
.

This completes the initial part of the proof.

We now set out to improve the bound by removing four guards, one from each corner of
the grid.

First, consider the possible locations of guards in the lower-left corner of Pm �Pn. We
consider whether any of the vertices (1, 1), (2, 1), (1, 2), (2, 2) are in the perfect dominating
set of the infinite grid graph. Note that we shall consider all these possibilities, rather than
assuming a fixed initial location of a guard in the lower-left corner (say at (1, 1)), since the
general argument can then be applied to other corners (and the initial location of guards in
those corners depends on n and m, as well as the location of guards in the lower left corner).

Suppose that (1, 1) or (2, 1) is in the perfect dominating set on the infinite grid graph.
Then there is either a core guard located at (1, 1) or (2, 1) and the core is on the left in the
initial eviction set of Pm �Pn, as shown in Figure 12 (a) and (b) respectively. It easy to see
that although vertices (−1, 0) and (0, 0), respectively, are in the perfect dominating set of
the infinite grid graph, in either case, the corresponding guard in Pm �Pn is not required.
These vertices are indicated by a star in Figure 12 (a) and (b).

1By design of our guard strategy, there always exists a neighbor of w with no guard. This fact is somewhat
irrelevant to the correctness of the proof, since if w had no unoccupied neighbor, then the attack would require
no action on the part of the defender.
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(0,1)

(a) (b) (c)

(d) (e)

(-1,0) (0,0)

(-1,1)

(0, 2)

Figure 12: Lower left corner, with the core drawn on the left.

Suppose that (1, 2) is in the perfect dominating set on the infinite grid graph. Then
there is a core guard located at (1, 2) and the core is on the left in the initial eviction set on
Pm �Pn, as shown in Figure 12 (c). Then instead of placing a guard at (2, 1) (since (2, 0) is
in the perfect dominating set on the infinite grid graph), we place a guard at (1, 1). In the
infinite grid graph, vertex (−1, 1) is in the perfect dominating set, but the corresponding
guard in Pm �Pn is not required; this vertex is indicated by a star in Figure 12 (c).

Suppose that (2, 2) is in the perfect dominating set on the infinite grid graph. Then
there is a core guard located at (2, 2) and the core is on the left in the initial eviction set
of Pm �Pn, as shown in Figure 12 (d). Then instead of placing a grey guard at (1, 3) (since
(−1, 3) is in the perfect dominating set on the infinite grid graph), we place a grey guard at
(1, 2); additionally, there is a core guard at (2, 1) instead of (3, 1). In the infinite grid graph,
vertex (0, 1) is in the perfect dominating set, but the corresponding guard in Pm �Pn is not
required; this vertex is indicated by a star in Figure 12 (d).

To conclude the possibilities for the lower left corner, suppose that none of (1, 1), (2, 1),
(1, 2), (2, 2) is in the perfect dominating set on the infinite grid graph. If the core is on the
left in the initial eviction set of Pm �Pn, as shown in Figure 12 (e), then instead of placing
a grey guard at (1, 4) and a white guard at (1, 2) (since (−1, 4) and (0, 2) are in the perfect
dominating set on the infinite grid graph), we place a grey guard at (1, 3). In the infinite
grid graph, vertex (1, 0) is in the perfect dominating set, but the corresponding guard in
Pm �Pn is not required; this vertex is indicated by a star in Figure 12 (e).

In Figure 12 (a)-(e), all vertices of Pm �Pn are dominated by black, white and grey guards.
If the core moves to the right or a grey or white vertex is attacked, it is easy to see that all
vertices of Pm �Pn remain dominated. A symmetric argument (or a rotation of 180o) can
be used to show that one guard is not required for the upper right corner and has therefore
been omitted.
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(a) (b) (c)

(d) (e)

(-1,n+1)

(-1,n)

(1,n)

(0,n+1)

(0,n)

Figure 13: Upper left corner, with the core drawn on the left.

Now consider the upper left corner. First, suppose (2, n) is in the perfect dominating set
of the infinite grid graph. Recall that this implies there is a core guard at (2, n) and the
core is on the left in the initial eviction set of Pm �Pn as shown in Figure 13 (a). Although
(−1, n + 1) is in the perfect dominating set of the infinite grid graph, the corresponding
guard in Pm �Pn is not required. This vertex is indicated by a star in Figure 13 (a).

Second, suppose (2, n − 1) is in the perfect dominating set of the infinite grid graph.
Then (1, n + 1) is also in the perfect dominating set of the infinite grid graph. Recall that
this implies there is a core guard at (1, n) and the core is on the left in the initial eviction
set of Pm �Pn as shown in Figure 13 (b). Although (−1, n) is in the perfect dominating set
of the infinite grid graph, the corresponding guard in Pm �Pn is not required. This vertex is
indicated by a star in Figure 13 (b).

Third, suppose (1, n) is in the perfect dominating set of the infinite grid graph. Then
there is a core guard at (1, n) and the core is on the left in the initial eviction set on Pm �Pn,
as shown in Figure 13 (c). Then instead of placing a guard at (3, n) (since (3, n+ 1) is in the
perfect dominating set on the infinite grid graph), we place a guard at (2, n). In the infinite
grid graph, vertex (1, n) is in the perfect dominating set, but the corresponding guard in
Pm �Pn is not required; this vertex is indicated by a star in Figure 13 (c).

Fourth, suppose (1, n − 1) is in the perfect dominating set on the infinite grid graph.
Then there is a core guard located at (1, n − 1) and the core is on the left in the initial
eviction set of Pm �Pn. In this case, instead of placing a core guard at (1, n− 1) and a grey
guard at (1, n− 2), we place a core guard at (1, n) and a grey guard at (2, n− 2) as shown
in Figure 13 (d). In the infinite grid graph, vertex (0, n + 1) is in the perfect dominating
set, but the corresponding guard in Pm �Pn is not required; this vertex is indicated by a star
in Figure 13 (d). From the figure, it is clear that the guards form a dominating set when
the core is on the left. If the core moves to the right in response to an attack, then the
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core guard at (1, n) moves to (1, n− 1) and the grey guard at (2, n− 2) moves to (2, n− 1)
(and all other core guards move to the right) and consequently all vertices are dominated.
Figure 14 (i) illustrates the movement of the guards (with arrows). If the core moves to the
left (or that grey vertex is attacked), then the grey guard returns to its previous vertex.

(i) (ii)

Figure 14: The movement of guards in response to an attack.

To conclude the possibilities for the upper left corner, suppose that none of (2, n), (2, n−
1), (1, n), (1, n− 1) is in the perfect dominating set on the infinite grid graph. If the core is
on the left in the initial eviction set, as shown in Figure 13 (e), then instead of placing a core
guard at (2, n) (since (2, n+1) is in the perfect dominating set on the infinite grid graph), we
place a core guard at (1, n); additionally, instead of placing a core guard at (1, n−2), we place
a core guard at (2, n−3). In the infinite grid graph, vertex (0, n) is in the perfect dominating
set, but the corresponding guard in Pm �Pn is not required; this vertex is indicated by a star
in Figure 13 (e). From the figure, it is clear that the guards form a dominating set when
the core is on the left. If the core moves to the right in response to an attack, then the grey
guard at (1, n − 3) moves to (1, n − 2) and the core guard at (2, n − 3) moves to (2, n − 2)
(and all other core guards move to the right) and consequently all vertices are dominated.
Figure 14 (ii) illustrates the movement of the guards (with arrows). If the core moves to the
left, the guards at (1, n− 2) and (2, n− 2) returns to their previous vertex.

In Figure 13 (a)-(e), all vertices of Pm �Pn are dominated by black, white and grey guards.
If the core moves to the right or a grey or white vertex is attacked, it is easy to see that all
vertices of Pm �Pn remain dominated.

A symmetric argument (or a rotation of 180o) can be used to show that one guard is not
required for the lower right corner and has therefore been omitted.

As one guard has been eliminated for each corner, the eviction number of Pm �Pn is at
most b (n+2)(m+3)

5
c − 4.

We also provide upper bounds for e∞m (P5 �Pn), e∞m (P6 �Pn) and e∞m (P7 �Pn).

Theorem 23 For n ≥ 14,

e∞m (P5 �Pn) ≤
⌈4n+ 3

3

⌉
e∞m (P6 �Pn) ≤

⌈3n+ 1

2

⌉
e∞m (P7 �Pn) ≤

⌈7n+ 5

4

⌉
.
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Proof: Let n ≥ 14. By (1)-(2), e∞m (P1 �Pn) ≤ γ(Pn) + 1 = dn
3
e + 1 and by Lemma 2

and [13], e∞m (P4 �Pn) = n. By considering the disjoint subgraphs P1 �Pn and P4 �Pn, we
conclude e∞m (P5 �Pn) ≤ e∞m (P1 �Pn) + e∞m (P4 �Pn) ≤ d4n+3

3
e as desired.

By Theorem 1, e∞m (P2 �Pn) = dn+1
2
e. By considering the disjoint subgraphs P2 �Pn and

P4 �Pn, we conclude e∞m (P6 �Pn) ≤ e∞m (P2 �Pn) + e∞m (P4 �Pn) ≤ d3n+1
2
e as desired.

From the results of Section 3 and [13], e∞m (P3 �Pn) ≤ γ(P3 �Pn)+1 = d3n+1
4
e+1. By con-

sidering the disjoint subgraphs P3 �Pn and P4 �Pn, we conclude e∞m (P7 �Pn) ≤ e∞m (P3 �Pn) +
e∞m (P4 �Pn) ≤ d7n+21

4
e as desired.

5 Open Questions

We make the following conjecture.

Conjecture 24 There exist m > 1 and n > 1 such that DDm(Pm �Pn) 6= e∞m (Pm �Pn).

When n = 5, it is easy to verify that DDm(P3 �Pn) = γ(P3 �Pn) + 1. The same holds for
n = 9: consider a dominating set with vertices in row 2 column 1, row 1 column 3, row 3
column 3, and row 2 columns 5 through 9. See Figure 15 which shows this dominating set
(part (a)) and a disjoint one such that there is a perfect matching between the two (part (b)).
Note that the vertex in row 2 column 5 of the dominating set in Figure 15 (a) is matched
with the vertex in row 2 column 4 of the dominating set in Figure 15 (b). This pattern does
not extend when n gets large and n ≡ 1 (mod 4), since γ(P3 �Pn+4) = γ(P3 �Pn) + 3 when
n ≡ 1 (mod 4). However, when n gets large and n ≡ 1 (mod 4), perhaps it is the case that
DDm(P3 �Pn) > γ(P3 �Pn) + 1.

FIGURES 15 and 16

(a) (b)

Figure 15: Dominating sets of P3 �P9.

Question 25 Is it true that DDm(P3 �Pn) = γ(P3 �Pn)+2 when n ≡ 1 (mod 4) and n > 9?

It would be of interest to bound DDm(Pm �Pn) for large m,n.

Question 26 Can the bound in Theorem 22 be improved?

Question 27 Is it true that DDm(P5 �Pn) = γ(P5 �Pn) = e∞m (P5 �Pn) when n ≥ 5?

In [5], it was determined that γ(P6 �P6) = 10. Combined with Theorem 23, we find
γ(P6 �P6) = DDm(P6 �P6) = e∞m (P6 �P6) = 10.

Question 28 Is DDm(P6 �Pn) = γ(P6 �Pn) = e∞m (P6 �Pn) for all n ≥ 6?
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Appendix

In [13], the authors state the following lemma.

Lemma 29 γ(P4 �Pn) ≤ n for all n = 4, 7, 8 and n ≥ 10.

While the result is true, the proof is flawed. The authors label the vertices of the
four copies of Pn as w1, w2, . . . , wn; x1, x2, . . . , xn; y1, y2, . . . , yn; z1, z2, . . . , zn where (wi, xi),
(xi, yi), (yi, zi) are edges in P4 �Pn. The authors break the proof into three cases to prove
the result. In the first case, the authors suppose n = 4 + 3k for some integer k ≥ 0. They let

D1 = {w3, x1, y4, z2}, D2 = {w6t, x6t, z6t+1 | t = 0, . . . , dk/2e},

D3 = {w6t+3, y6t+4, z6t+2 | t = 0, . . . , bk/2c}
and state that D1 ∪ D2 ∪ D3 forms a dominating set. We note that the set D1 ∪ D2 ∪ D3

actually contains n + 1, rather than n vertices, contains x0 and w0 which do not exist,
and actually does not form a dominating set. For example, N [z5] = {z4, z5, z6, y5} but
N [z5] 6∈ D1 ∪D2 ∪D3.

In the second and third cases, the authors provide dominating sets of sizes n + 2 and
n+ 1, rather than of size n. We now provide a corrected proof of Lemma 29.

Proof: Label the vertices of P4 �Pn as above. We break the proof into three cases:

Case 1: Suppose n = 3k + 4 for some integer k ≥ 0. Let

D1 = {w3, x1, y4, z2}, D2 = {w6t−1, x6t+1, z6t | t = 1, . . . , dk/2e},

D3 = {w6t+3, y6t+4, z6t+2 | t = 1, . . . , bk/2c}.
We claim D1 ∪D2 ∪D3 forms a dominating set of size n. Note |D1| = 4 and for every unit
increase of k, the value of n increases by 3 and the size of D1 ∪D2 ∪D3 increases by 3.

Next, suppose N [z6t+i] = {z6t+i−1, z6t+i, z6t+i+1, y6t+i} is not dominated for some i ∈
{0, 1, 2, 3, 4, 5}, t ∈ {0, 1, . . . , bk/2c} and 1 < 6t+ i < 3k + 4. Then from D2, 6t 6= 6t+ i⇒
i 6= 0 and from D3, 6t + 2 is not equal to 6t + i, 6t + i + 1, 6t + i − 1, so i 6= 1, 2, 3. From
D3, y6t+4 6= y6t+i ⇒ i 6= 4. This leaves i = 5. However, z6t+5 is adjacent to z6(t+1) ∈ D2 and
t + 1 ≤ dk/2e while t ≤ bk/2c. This yields a contradiction. A very similar argument shows
y6t+i, x6t+i, w6t+i are dominated.

Case 2: Suppose n = 3k + 8 for some integer k ≥ 0. Let

D1 = {w3, w7, x1, x5, y4, y8, z2, z6}, D2 = {w6t+3, x6t+5, z6t+2 | t = 1, 2, . . . , dk/2e},

D3 = {w6t+7, y6t+8, z6t+6 | t = 1, 2, . . . , bk/2c}.
We claim D1 ∪D2 ∪D3 forms a dominating set of size n. Note |D1| = 8 and for every unit
increase in k, the value of n increases by 3 and the size of D1 ∪D2 ∪D3 increases by 3. To
show all vertices are dominated, an argument similar to that in Case 1 can be used.

Case 3: Suppose n = 3k + 12 for some integer k ≥ 0. Let

D1 = {w3, w7, w11, x1, x5, x9, y4, y8, y12, z2, z6, z10},
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D2 = {w6t+7, x6t+9, z6t+8 | t = 1, 2, . . . , dk/2e},
D3 = {w6t+11, y6t+12, z6t+10 | t = 1, 2, . . . , bk/2c.

We claim D1 ∪D2 ∪D3 forms a dominating set of size n. Note |D1| = 12 and for every
unit increase in k, the value of n increases by 3 and the size of D1 ∪D2 ∪D3 increases by 3.
To show all vertices are dominated, an argument similar to that in Case 1 can be used.

An example of the dominating set on P4 �Pn for n = 3k + 12 is illustrated in Figure 16;
the vertices of D1 are indicated by circles, the vertices of D2 are indicated by squares, and
the vertices of D3 are indicated by triangles.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 nn -2 n -1n -3n -4n -5

...

...

...

...

Figure 16: The dominating set D1 ∪D2 ∪D3 for n = 3k + 12.
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