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Abstract

In this paper we study various fundamental connectivity properties of hypergraphs
from a graph-theoretic perspective, with the emphasis on cut edges, cut vertices, and
blocks. We prove a number of new results involving these concepts. In particular, we
describe the exact relationship between the block decomposition of a hypergraph and
the block decomposition of its incidence graph.

Keywords: Hypergraph, incidence graph, walk, trail, path, cycle, connected hyper-
graph, cut edge, cut vertex, separating vertex, block.

1 Introduction

A data base search under “hypergraph” returns hundreds of journal articles published in
the last couple of years alone, but only a handful of monographs. Among the latter, most
either treat very specific problems in hypergraph theory (for example, colouring in [8] and
also in [9]), or else are written with a non-mathematician audience in mind, and hence focus
on applications (for example, [6]). A mathematician or mathematics student looking for
a general introduction to hypergraphs is left with Berge’s decades-old Hypergraphs [3] and
Graphs and Hypergraphs [2], and Voloshin’s much more recent Introduction to Graphs and
Hypergraphs [9], aimed at undergraduate students. The best survey on hypergraphs that
we could find, albeit already quite out of date, is Duchet’s chapter [7] in the Handbook
on Combinatorics. In particular, it describes the distinct paths that lead to the study of
hypergraphs from graph theory, optimization theory, and extremal combinatorics, explaining
the fragmented terminology and disjointed nature of the results. Berge’s work, for example,
though an impressive collection of results, shows a distinct bias for hypergraphs arising from
extremal set theory and optimization theory, and as such is rather unappealing to graph
theorists, in general.

The numerous journal publications, on the other hand, treat a great variety of specific
problems on hypergraphs. Graph theorists find various ways of generalizing concepts from
graph theory, often without justifying their own approach or comparing it with others. The
same term in hypergraphs (for example, cycle) may have a variety of different meanings.
Sometimes, authors implicitly assume that results for graphs extend to hypergraphs. A
coherent theory of hypergraphs, as we know it for graphs, is sorely lacking.

This article can serve as an introduction to hypergraphs from a graph-theoretic perspec-
tive, with a focus on basic connectivity. To prepare the ground for the more involved results
on block decomposition of hypergraphs, we needed to carefully and systematically examine
the fundamental connectivity properties of hypergraphs, attempting to extend basic results
such as those found in the first two chapters of a graph theory textbook. We are strongly
biased in our approach by the second author’s graph-theoretic perspective, as well as in our
admiration for Bondy and Murty’s graph theory “bible” [5] and its earlier incarnation [4].
While we expect that some of these observations have been made before, to the best of our
knowledge they have never been tied to a coherent theory of connection in hypergraphs and
published in a widely accessible form.

Our paper is organized as follows. In Section 2 we present the fundamental concepts
involving hypergraphs, as well as some immediate observations. Section 3 forms the bulk
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of the work: from graphs to hypergraphs, we generalize the concepts of various types of
walks, connection, cut edges and cut vertices, and blocks, and prove a number of new results
involving these concepts.

A longer version of this paper is available on ArXiv [1].

2 Fundamental concepts

2.1 Hypergraphs and subhypergraphs

We shall begin with some basic definitions pertaining to hypergraphs. The graph-theoretic
terms used in this article are either analogous to the hypergraph terms defined here, or else
are standard and can be found in [5].

Definition 2.1. A hypegraph H is an ordered pair (V,E), where V and E are disjoint finite
sets such that V ̸= ∅, together with a function ψ : E → 2V , called the incidence function.
The elements of V = V (H) are called vertices, and the elements of E = E(H) are called
edges. The number of vertices |V | and number of edges |E| are called the order and size of
the hypergraph, respectively. Often we denote n = |V | and m = |E|. A hypergraph with a
single vertex is called trivial, and a hypergraph with no edges is called empty.

Two edges e, e′ ∈ E are said to be parallel if ψ(e) = ψ(e′), and the number of edges
parallel to edge e (including e) is called the multiplicity of e. A hypergraph H is called
simple if no edge has multiplicity greater than 1; that is, if ψ is injective.

As it is customary for graphs, the incidence function may be omitted when no ambiguity
can arise (in particular, when the hypergraph is simple, or when we do not need to distinguish
between distinct parallel edges). An edge e is then identified with the subset ψ(e) of V , and
for v ∈ V and e ∈ E, we conveniently write v ∈ e or v ̸∈ e instead of v ∈ ψ(e) or
v ̸∈ ψ(e), respectively. Moreover, E is then treated as a multiset, and we use double braces
to emphasize this fact when needed. Thus, for example, {1, 2} = {{1, 2}} but {1, 1, 2} =
{1, 2} ̸= {{1, 1, 2}}.

Definition 2.2. Let H = (V,E) be a hypergraph. If v, w ∈ V are distinct vertices and
there exists e ∈ E such that v, w ∈ e, then v and w are said to be adjacent in H (via edge
e). Similarly, if e, f ∈ E are distinct (but possibly parallel) edges and v ∈ V is such that
v ∈ e ∩ f , then e and f are said to be adjacent in H (via vertex v).

Each ordered pair (v, e) such that v ∈ V , e ∈ E, and v ∈ e is called a flag of H; the
(multi)set of flags is denoted by F (H). If (v, e) is a flag of H, then we say that vertex v is
incident with edge e.

The degree of a vertex v ∈ V (denoted by degH(v) or simply deg(v) if no ambiguity
can arise) is the number of edges e ∈ E such that v ∈ e. A vertex of degree 0 is called
isolated, and a vertex of degree 1 is called pendant. A hypergraph H is regular of degree r
(or r-regular) if every vertex of H has degree r.

The maximum (minimum) cardinality |e| of any edge e ∈ E is called the rank (corank,
respectively) of H. A hypergraph H is uniform of rank r (or r-uniform) if |e| = r for all
e ∈ E. An edge e ∈ E is called a singleton edge if |e| = 1, and empty if |e| = 0.
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The concepts of isomorphism and incidence matrix for hypergraphs are straightforward
generalizations from graphs and designs; see [1] for more details.

The following types of subhypergraphs will be used in this paper.

Definition 2.3. Let H = (V,E) be a hypergraph.

1. A hypergraph H ′ = (V ′, E ′) is called a subhypergraph of H if V ′ ⊆ V and either E ′ = ∅
or the incidence matrix of H ′, after a suitable permutation of its rows and columns,
is a submatrix of the incidence matrix of H. Thus, every edge e′ ∈ E ′ is of the form
e ∩ V ′ for some e ∈ E, and the corresponding mapping from E ′ to E is injective.

2. A subhypergraph H ′ = (V ′, E ′) of H with E ′ = {{e ∩ V ′ : e ∈ E, e ∩ V ′ ̸= ∅}} is said to
be induced by V ′.

3. If |V | ≥ 2 and v ∈ V , then H\v will denote the subhypergraph of H induced by
V − {v}, also called a vertex-deleted subhypergraph of H.

4. A hypergraph H ′ = (V ′, E ′) is called a hypersubgraph of H if V ′ ⊆ V and E ′ ⊆ E.

5. A hypersubgraph H ′ = (V ′, E ′) of H is said to be induced by V ′, denoted by H[V ′], if
E ′ = {{e ∈ E : e ⊆ V ′, e ̸= ∅}}.

6. A hypersubgraph H ′ = (V ′, E ′) of H is said to be induced by E ′, denoted by H[E ′], if
V ′ = ∪e∈E′e.

7. For E ′ ⊆ E and e ∈ E, we write shortly H − E ′ and H − e for the hypersubgraphs
(V,E − E ′) and (V,E − {{e}}), respectively. The hypersubgraph H − e may also be
called an edge-deleted hypersubgraph.

Note that the above definitions of subhypergraphs and vertex-subset-induced subhyper-
graphs are consistent with [7]. A more detailed discussion of these terms can be found in
[1].

Observe that, informally speaking, the vertex-deleted subhypergraph H\v is obtained
from H by removing vertex v from V and from all edges of H, and then discarding the
empty edges.

It is easy to see that every hypersubgraph of H = (V,E) is also a subhypergraph of
H, but not conversely. However, not every hypersubgraph of H induced by V ′ ⊆ V is a
subhypergraph of H induced by V ′.

Observe also that if H is a 2-uniform hypergraph (and hence a loopless graph), its hy-
persubgraphs, vertex-subset-induced hypersubgraphs, edge-subset-induced hypersubgraphs,
and edge-deleted hypersubgraphs are precisely its subgraphs, vertex-subset-induced sub-
graphs, edge-subset-induced subgraphs, and edge-deleted subgraphs (in the graph-theoretic
sense), respectively. However, its vertex-deleted subgraphs are obtained by deleting all sin-
gleton edges from its vertex-deleted subhypergraphs.

The union and intersection of hypergraphs is again defined analogously to graphs, and
if a hypergraph H is an edge-disjoint union of hypergraphs H1 and H2, then {H1, H2} is a
decomposition of H, and we write H = H1 ⊕H2.
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The dual of a non-empty hypergraph H is a hypergraph HT whose incidence matrix
is the transpose of the incidence matrix of H. To obtain the dual HT = (ET , V T ) of
a hypergraph H = (V,E), we label the edges of H as e1, . . . , em (with distinct parallel
edges receiving distinct labels). Then let ET = {e1, . . . , em} and V T =

{{
vT : v ∈ V

}}
,

where vT = {e ∈ ET : v ∈ e} for all v ∈ V . Observe that (v, e) ∈ F (H) if and only if
(e, vT ) ∈ F (HT ). Hence (HT )T = H.

Lemma 2.4. Let H = (V,E) be a non-empty hypergraph with the dual HT = (ET , V T ), and
let v ∈ V and e ∈ E. Then:

1. degH(v) = |vT |.

2. v is an isolated vertex (pendant vertex) in H if and only if vT is an empty edge (sin-
gleton edge, respectively) in HT .

3. If |V | ≥ 2, H has no empty edges, and {v} ̸∈ E, then (H\v)T = HT − vT .

4. If |E| ≥ 2, H has no isolated vertices, and e contains no pendant vertices, then
(H − e)T = HT\e.

Proof. The first two statements of the lemma follow straight from the definition of vertex
degree.

To see the third statement, assume that |V | ≥ 2, H has no empty edges, and {v} ̸∈ E.
Now H\v is obtained from H by deleting vertex v, deleting all flags containing v from F (H),
and discarding all resulting empty edges. Hence (H\v)T is obtained from HT by deleting
edge vT , deleting all flags containing vT from F (HT ), and discarding all resulting isolated
vertices. However, any such isolated vertex would in HT correspond either to an isolated
vertex or a pendant vertex incident only with the edge vT . This would imply existence of
an empty edge or an edge {v} in H, a contradiction. Hence (H\v)T was obtained from HT

just by deleting edge vT and all flags containing vT ; that is, (H\v)T = HT − vT .
To prove the fourth statement, assume that |E| ≥ 2, H has no isolated vertices, and e

contains no pendant vertices. Recall that H − e is obtained from H, and similarly (H − e)T

from HT , by deleting e and all flags containing e. This operation on HT is exactly vertex
deletion provided that (H − e)T has no empty edges. Now an empty edge in (H − e)T

corresponds to an isolated vertex in H − e, and hence in H, it corresponds either to an
isolated vertex or a pendant vertex incident with e. However, by assumption, H does not
have such vertices. We conclude that (H − e)T = HT\e as claimed.

2.2 Graphs associated with a hypergraph

A hypergraph is, of course, an incidence structure, and hence can be represented with an
incidence graph (to be defined below). This representation retains complete information
about the hypergraph, and thus allows us to translate problems about hypergraphs into
problems about graphs — a much better explored territory.

Definition 2.5. Let H = (V,E) be a hypergraph with incidence function ψ. The incidence
graph G(H) of H is the graph G(H) = (VG, EG) with VG = V ∪E and EG = {ve : v ∈ V, e ∈
E, v ∈ ψ(e)}.
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Observe that the incidence graph G(H) of a hypergraph H = (V,E) with E ̸= ∅ is a
bipartite simple graph with bipartition {V,E}. We shall call a vertex x of G(H) a v-vertex
if x ∈ V , and an e-vertex if x ∈ E. Note that the edge set of G(H) can be identified with
the flag (multi)set F (H); that is, EG = {ve : (v, e) ∈ F (H)}.

The following is an easy observation, hence the proof is left to the reader.

Lemma 2.6. Let H = (V,E) be a non-empty hypergraph and HT = (ET , V T ) its dual. The
incidence graphs G(H) and G(HT ) are isomorphic with an isomorphism φ : V ∪E → ET∪V T

defined by φ(e) = e for all e ∈ E, and φ(v) = vT for all v ∈ V .

Next, we outline the relationship between subhypergraphs of a hypergraph and the sub-
graphs of its incidence graph. The proof of this lemma is straightforward and hence omitted.

Lemma 2.7. Let H = (V,E) be a hypergraph and H ′ = (V ′, E ′) a subhypergraph of H.
Then:

1. G(H ′) is the subgraph of G(H) induced by the vertex set V ′ ∪ E ′.

2. If H ′ is a hypersubgraph of H, then in addition, degG(H′)(e) = degG(H)(e) = |e| for all
e ∈ E ′.

Conversely, take a subgraph G′ of G(H). Then:

1. V (G′) = V ′ ∪ E ′ for some V ′ ⊆ V and E ′ ⊆ E, and E(G′) ⊆ {ve : v ∈ V ′, e ∈ E ′, v ∈
e}.

2. G′ is the incidence graph of a subhypergraph of H if and only if V ′ ̸= ∅ and for all
e ∈ E ′ we have {ve : v ∈ e ∩ V ′} ⊆ E(G′).

3. G′ is the incidence graph of a hypersubgraph of H if and only if V ′ ̸= ∅ and degG′(e) =
degG(H)(e) = |e| for all e ∈ E ′.

In the following lemma, we determine the incidence graphs of vertex-deleted subhyper-
graphs and edge-deleted hypersubgraphs.

Lemma 2.8. Let H = (V,E) be a hypergraph. Then:

1. For all e ∈ E, we have G(H − e) = G(H)\e.

2. If |V | ≥ 2, H has no empty edges, and v ∈ V is such that {v} ̸∈ E, then G(H\v) =
G(H)\v.

Proof. 1. Recall that H−e is obtained from H by deleting e from E, thus also destroying
all flags containing e. This is equivalent to deleting e from the vertex set of G(H), as
well as all edges of G(H) incident with e, which results in the vertex-deleted subgraph
G(H)\e.

2. Now H\v is obtained from H by deleting v from V and from all edges containing v,
and then discarding all resulting empty edges. However, if H has no empty edges and
{v} ̸∈ E, then there are no empty edges to discard, and so this operation is equivalent
to deleting v from the vertex set of G(H) and deleting all edges of G(H) incident with
v, resulting in the vertex-deleted subgraph G(H)\v. Hence G(H)\v = G(H\v).
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3 Connection in Hypergraphs

3.1 Walks, trails, paths, cycles

In this section, we would like to systematically generalize the standard graph-theoretic no-
tions of walks, trails, paths, and cycles to hypergraphs. In this context, we need to distinguish
between distinct parallel edges, hence the original definition of a hypergraph that includes
the incidence function will be used.

Definition 3.1. LetH = (V,E) be a hypergraph with incidence function ψ, let u, v ∈ V , and
let k ≥ 0 be an integer. A (u, v)-walk of length k in H is a sequence v0e1v1e2v2 . . . vk−1ekvk
of vertices and edges (possibly repeated) such that v0, v1, . . . , vk ∈ V , e1, . . . , ek ∈ E, v0 = u,
vk = v, and for all i = 1, 2, . . . , k, the vertices vi−1 and vi are adjacent in H via the edge ei.

If W = v0e1v1e2v2 . . . vk−1ekvk is a walk in H, then vertices v0 and vk are called the
endpoints of W , and v1, . . . , vk−1 are the internal vertices of W .

We denote the set of all edges of a walk W by E(W ), and the set of all its vertices by
V (W ); that is, V (W ) =

∪
e∈E(W ) e. Furthermore, vertices v0, v1, . . . , vk are called the anchor

vertices (or anchors) of W , and we write Va(W ) = {v0, v1, . . . , vk}.

Observe that since adjacent vertices are by definition distinct, no two consecutive vertices
in a walk are the same. Note that the edge set E(W ) of a walk W may contain distinct
parallel edges.

Recall that a trail in a graph is a walk with no repeated edges. For a walk in a graph,
having no repeated edges is necessary and sufficient for having no repeated flags; in a hy-
pergraph, only sufficiency holds. This observation suggests two possible ways to define a
trail.

Definition 3.2. Let W = v0e1v1e2v2 . . . vk−1ekvk be a walk in a hypergraph H = (V,E)
with incidence function ψ.

1. If the anchor flags (v0, e1), (v1, e1), (v1, e2), . . . , (vk−1, ek), (vk, ek) are pairwise distinct,
then W is called a trail.

2. If the edges e1, . . . , ek are pairwise distinct, then W is called a strict trail.

3. If the anchor flags (v0, e1), (v1, e1), (v1, e2), . . . , (vk−1, ek), (vk, ek) and the vertices v0, v1,
. . . , vk are pairwise distinct (but the edges need not be), then W is called a pseudo
path.

4. If both the vertices v0, v1, . . . , vk and the edges e1, . . . , ek are pairwise distinct, then W
is called a path.

We emphasize that in the above definitions, “distinct” should be understood in the strict
sense; that is, parallel edges need not be distinct.

We extend the above definitions to closed walks in the usual way.

Definition 3.3. Let W = v0e1v1e2v2 . . . vk−1ekvk be a walk in a hypergraph H = (V,E)
with incidence function ψ. If k ≥ 2 and v0 = vk, then W is called a closed walk. Moreover:
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1. If W is a trail (strict trail), then it is called a closed trail (closed strict trail, respec-
tively).

2. If W is a closed trail and the vertices v0, v1, . . . , vk−1 are pairwise distinct (but the
edges need not be), then W is called a pseudo cycle.

3. If the vertices v0, v1, . . . , vk−1 and the edges e1, . . . , ek are pairwise distinct, then W is
called a cycle.

From the above definitions, the following observations are immediate.

Lemma 3.4. Let W be a walk in a hypergraph H. Then:

1. If W is a trail, then no two consecutive edges in W are the same (including the last
and the first edge if W is a closed trail).

2. If W is a (closed) strict trail, then it is a (closed) trail.

3. If W is a pseudo path (pseudo cycle), then it is a trail (closed trail, respectively), but
not necessarily a strict trail (closed strict trail, respectively).

4. If W is a path (cycle), then it is both a pseudo path (pseudo cycle, respectively) and a
strict trail (closed strict trail, respectively).

We mention that several special types of hypergraph cycles have been defined and studied
in the literature, for example, loose cycles and tight cycles. Our definition coincides with the
one in [2] and [7]; in fact, our cycles are sometimes called Berge cycles.

In a graph, a path or cycle can be identified with the corresponding subgraph (also called
path or cycle, respectively). This is not the case in hypergraphs. First, we note that there
are (at least) two ways to define a subhypergraph associated with a path or cycle. We define
these more generally for walks.

Definition 3.5. Let W be a walk in a hypergraph H = (V,E). Define the hypersubgraph
H(W ) and a subhypergraph H′(W ) of H associated with the walk W as follows:

H(W ) = (V (W ), E(W ))

and

H′(W ) = (Va(W ), {{e ∩ Va(W ) : e ∈ E(W )}}).

That is, H′(W ) is the subhypergraph of H(W ) induced by the set of anchor vertices Va(W ).

Second, we observe that, even when W is a path or a cycle, not much can be said about
the degrees of the vertices in the associated subhypergraphs H(W ) and H′(W ). Thus, unlike
in graphs, we can not use a path (cycle) W (as a sequence of vertices and edges) and its
associated subhypergraphs H(W ) and H′(W ) interchangeably.

The following lemma will justify the terminology introduced in this section.
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Lemma 3.6. Let H = (V,E) be a hypergraph and G = G(H) its incidence graph. Let
vi ∈ V for i = 0, 1, . . . , k, and ei ∈ E for i = 1, . . . , k, and let W = v0e1v1e2v2 . . . vk−1ekvk
be an alternating sequence of vertices and edges of H. Denote the corresponding sequence of
vertices in G by WG. Then the following hold:

1. W is a (closed) walk in H if and only if WG is a (closed) walk in G with no two
consecutive v-vertices the same.

2. W is a trail (path, cycle) in H if and only if WG is a trail (path, cycle, respectively) in
G.

3. W is a strict trail in H if and only if WG is a trail in G that visits every e ∈ E at
most once.

4. W is a pseudo path (pseudo cycle) in H if and only if WG is a trail (closed trail,
respectively) in G that visits every v ∈ V at most once.

Proof. 1. If W is a walk in H, then any two consecutive elements of the sequence W are
incident in H, and hence the corresponding vertices are adjacent in G. Thus WG is a
walk in G. Moreover, no two consecutive vertices in W are the same, whence not two
consecutive v-vertices in WG are the same. The converse is shown similarly. Clearly
W is closed if and only if WG is.

Observe that the anchor vertices and the edges of W correspond to the v-vertices and
e-vertices of WG, respectively, and the anchor flags of W correspond to the edges of
WG.

2. If W is a trail in H, then W is a walk with no repeated anchor flags; hence WG is
a walk in G with no repeated edges, that is, a trail. Conversely, if WG is a trail in
G, then it is a walk with no repeated edges, and hence no two identical consecutive
v-vertices. It follows that W is a walk in H with no repeated anchor flags, that is, a
trail.

Similarly, if W is a path (cycle) in H, then W is a walk with no repeated edges and
no repeated vertices (except the endpoints for a cycle). Hence WG is a walk in G
with no repeated vertices (except the endpoints for a cycle), that is, a path (cycle,
respectively). The converse is shown similarly.

3. If W is a strict trail in H, then it is a trail with no repeated edges. Hence WG is a
trail in G with no repeated e-vertices. The converse is shown similarly.

4. If W is a pseudo path (pseudo cycle) in H, then it is a trail with no repeated vertices
(except the endpoints for a pseudo cycle). Hence WG is a trail in G with no repeated
v-vertices (except the endpoints for a pseudo cycle). The converse is similar.

The next observations are easy to see, hence the proof is omitted.
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Lemma 3.7. Let H = (V,E) be a non-empty hypergraph and HT = (ET , V T ) its dual.
Let vi ∈ V for i = 0, 1, . . . , k − 1, and ei ∈ E for i = 0, 1, . . . , k − 1, and let W =
v0e0v1e1v2 . . . vk−1ek−1v0 be a closed walk in H. Denote W T = e0v

T
1 e1v

T
2 . . . v

T
k−1ek−1v

T
0 e0,

where for each vertex vi of H, the symbol vTi denotes the corresponding edge in HT . Then
the following hold:

1. If ei ̸= ei+1 for all i ∈ Zk, then W
T is a closed walk in HT .

2. If W is a closed trail (cycle) in H, then W T is a closed trail (cycle, respectively) in
HT .

3. If W is a strict closed trail in H, then W T is a pseudo cycle in HT .

4. If W is a pseudo cycle in H, then W T is a strict closed trail in HT .

3.2 Connected hypergraphs

Connected hypergraphs are defined analogously to connected graphs, using existence of walks
(or equivalently, existence of paths) between every pair of vertices. The main result of this
section is the observation that a hypergraph (without empty edges) is connected if and only
if its incidence graph is connected. The reader will observe that existence of empty edges in
a hypergraph does not affect its connectivity; however, it does affect the connectivity of the
incidence graph.

Definition 3.8. Let H = (V,E) be a hypergraph. Vertices u, v ∈ V are said to be connected
in H if there exists a (u, v)-walk in H. The hypergraph H is said to be connected if every
pair of distinct vertices are connected in H.

Lemma 3.9. Let H = (V,E) be a hypergraph, and u, v ∈ V . There exists a (u, v)-walk in
H if and only if there exists a (u, v)-path.

Proof. Suppose H has a (u, v)-walk. By Lemma 3.6, it corresponds to a (u, v)-walk in the
incidence graph G(H), and by a classical result in graph theory, existence of a (u, v)-walk in
a graph guarantees existence of a (u, v)-path. Finally, by Lemma 3.6, a (u, v)-path in G(H)
(since u, v ∈ V ) corresponds to a (u, v)-path in H.

The converse obviously holds by definition.

It is clear that vertex connection in a hypergraph H = (V,E) is an equivalence relation
on the set V . Hence the following definition makes sense.

Definition 3.10. Let H = (V,E) be a hypergraph, and let V ′ ⊆ V be an equivalence
class with respect to vertex connection. The hypersubgraph of H induced by V ′ is called a
connected component of H. We denote the number of connected components of H by c(H).

Observe that, by the definition of a vertex-subset-induced hypersubgraph, the connected
components of a hypergraph have no empty edges. Alternatively, the connected components
of H can be defined as the maximal connected hypersubgraphs of H that have no empty
edges. It is easy to see that for a hypergraph H = (V,E) with the multiset of empty edges
denoted E0, the hypersubgraph H − E0 decomposes into the connected components of H.
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Theorem 3.11. Let H = (V,E) be a hypergraph without empty edges. Then H is connected
if and only if its incidence graph G = G(H) is connected.

Proof. Assume H is connected. Take any two vertices x, y of G. If x and y are both v-
vertices, then there exists an (x, y)-walk in H, and hence, by Lemma 3.6, an (x, y)-walk in
G. If x is an e-vertex and y is a v-vertex in G , then x is a non-empty edge in H. Choose
any v ∈ x. Since H is connected, it possesses a (v, y)-walk W . Then xW is an (x, y)-walk
in G. The remaining case x, y ∈ E is handled similarly. We conclude that G is connected.

Assume G is connected. Take any two vertices u, v of H. Then there exists (u, v)-path
in G, and hence by Lemma 3.6, a (u, v)-path in H. Therefore H is connected.

Corollary 3.12. Let H be a hypergraph and G = G(H) its incidence graph. Then:

1. If H ′ is a connected component of H, then G(H ′) is a connected component of G.

2. If G′ is a connected component of G with at least one v-vertex, then there exists a
connected component H ′ of H such that G′ = G(H ′).

3. If H has no empty edges, then there is a one-to-one correspondence between connected
components of H and connected components of its incidence graph.

Proof. 1. Let H ′ be a connected component of H, and let G′ = G(H ′). Since H ′ has
no empty edges by definition, G′ is connected by Theorem 3.11. Let G′′ be the con-
nected component of G containing G′ as a subgraph. Then G′′ contains v-vertices and
degG′′(e) = degG(e) for all e-vertices e of G′′, and so by Lemma 2.7, G′′ = G(H ′′) for
some hypersubgraph H ′′ of H. Since G′′ is connected and the incidence graph of a
hypergraph, it has no isolated e-vertices. Hence H ′′ has no empty edges, and so by
Theorem 3.11, H ′′ is connected since G′′ is. Now H ′ is a maximal connected hypersub-
graph of H without empty edges, and a hypersubgraph of a connected hypersubgraph
H ′′ without empty edges; it must be that H ′′ = H ′. Consequently, G′ = G′′ and so G′

is indeed a connected component of G.

2. Let G′ be a connected component of G with at least one v-vertex. Then degG′(e) =
degG(e) for all e-vertices e of G′, and so by Lemma 2.7, G′ = G(H ′) for some hyper-
subgraph H ′ of H. Since G′ is connected and the incidence graph of a hypergraph,
it has no isolated e-vertices; hence H ′ has no empty edges. Thus, by Theorem 3.11,
H ′ is connected since G′ is. Let H ′′ be the connected component of H containing H ′,
and G′′ = G(H ′′). Again by Theorem 3.11, G′′ is connected, and hence G′′ = G′ by
the maximality of G′. It follows that H ′ = H ′′, so indeed G′ = G(H ′), where H ′ is a
connected component of H.

3. Since H has no empty edges, every connected component of G has at least one v-vertex.
The conclusion now follows directly from the first two statements of the corollary.

Corollary 3.13. Let H be a hypergraph without empty edges and G = G(H) its incidence
graph. Then:

1. c(H) = c(G).
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2. If H is non-empty and has no isolated vertices, and HT is its dual, then c(H) = c(HT ).

Proof. 1. Since H has no empty edges, by Corollary 3.12 there is a one-to-one correspon-
dence between the connected components of H and G. Therefore, c(H) = c(G).

2. Assume H is non-empty and has no isolated vertices. Then HT is well defined and
has no empty edges, and so c(HT ) = c(G(HT )) by the first statement. Since by
Lemma 2.6 a hypergraph and its dual have isomorphic incidence graphs, it follows
that c(HT ) = c(G(HT )) = c(G) = c(H).

3.3 Cut edges and cut vertices

In this section, we define cut edges and cut vertices in a hypergraph analogously to those in
a graph. The existence of cut edges and cut vertices is one of the first measures of strength of
connectivity of a connected graph. In hypergraphs, however, we must consider two distinct
types of cut edges.

Definition 3.14. A cut edge in a hypergraph H = (V,E) is an edge e ∈ E such that
c(H − e) > c(H).

Lemma 3.15. Let e be a cut edge in a hypergraph H = (V,E). Then

c(H) < c(H − e) ≤ c(H) + |e| − 1.

Proof. The inequality on the left follows straight from the definiton of a cut edge. To see the
inequality on the right, first observe that e is not empty. Let H1, . . . , Hk be the connected
components of H−e whose vertex sets intersect e. Since e has at least one vertex in common
with each V (Hi), we have |e| ≥ k. Hence c(H − e) = c(H) + k − 1 ≤ c(H) + |e| − 1.

Definition 3.16. A cut edge e of a hypergraph H is called strong if c(H−e) = c(H)+|e|−1,
and weak otherwise.

Observe that a cut edge has cardinality at least two, and that any cut edge of cardinality
two (and hence any cut edge in a simple graph) is necessarily strong.

Recall that an edge of a graph is a cut edge if and only if appears in no cycle. We shall
now show that an analogous statement holds for hypergraphs if we replace “cut edge” with
“strong cut edge”.

Theorem 3.17. Let e be an edge in a connected hypergraph H = (V,E). The following are
equivalent:

1. e is a strong cut edge, that is, c(H − e) = |e|.

2. e contains exactly one vertex from each connected component of H − e.

3. e lies in no cycle of H.
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Proof. (1) ⇒ (2): Let e be a strong cut edge of H. Since H is connected, the edge e must
have at least one vertex in each connected component of H−e. Since there are |e| connected
components of H − e, the edge e must have exactly one vertex in each of them.

(2) ⇒ (1): Assume e contains exactly one vertex from each connected component of
H − e. Then clearly c(H − e) = |e|.

(2) ⇒ (3): Assume e contains exactly one vertex from each connected component of
H−e, and suppose e lies in a cycle C = v0e1v1e2v2 . . . vk−1ev0 of H. Then v0e1v1e2v2 . . . vk−1

is a path in H−e, and so v0 and vk−1 are two vertices of e in the same connected component
of H − e, a contradiction. Hence e lies in no cycle of H.

(3) ⇒ (2): Assume e lies in no cycle of H. Since H is connected, the edge e must contain
at least one vertex from each connected component of H−e. Suppose e contains two vertices
u and v in the same connected component H ′ of H − e. Then H ′ contains a (u, v)-path P ,
and Pveu is a cycle in H that contains e, a contradiction. Hence e possesses exactly one
vertex from each connected component of H − e.

The above theorem can be easily generalized to all (possibly disconnected) hypergraphs
as follows.

Corollary 3.18. Let e be an edge in a hypergraph H = (V,E). The following are equivalent:

1. e is a strong cut edge, that is, c(H − e) = c(H) + |e| − 1.

2. e contains exactly one vertex from each connected component of H−e that it intersects.

3. e lies in no cycle of H.

We know that an even graph has no cut edges; in other words, every edge of an even
graph (that is, a graph with no odd-degree vertices) lies in a cycle. This statement is false for
hypergraphs, as the example below demonstrates. In the following two theorems, however,
we present two generalizations to hypergraphs that do hold.

Counterexample 3.19. For every even n ≥ 2, define a hypergraph H = (V,E) as follows.
Let V = {vi : i = 1, . . . , 2n} and E = {ei : i = 1, . . . , 2n}, and let F (H) = {(vi, ej) : i, j =
1, . . . , n} ∪ {(vi, ej) : i, j = n+1, . . . , 2n} ∪ {(v1, en+1)}− {(v1, e1)}. Then every vertex in H
has degree n, which is even, but en+1 is a cut edge in H.

Theorem 3.20. Let H = (V,E) be a k-uniform hypergraph such that degH(u) ≡ 0 (mod k)
for every vertex u of H. Then H has no cut edges.

Proof. Suppose e is a cut edge of H, and let H1 = (V1, E1) be a connected component of
H − e that contains a vertex of e. Furthermore, let r = |e∩ V1|. Then 1 ≤ r ≤ k− 1, and so∑

v∈V1
degH1

(v) ≡ k|V1| − r ̸≡ 0 (mod k). However,
∑

v∈V1
degH1

(v) =
∑

f∈E1
|f | = k|E1|, a

contradiction. Hence H cannot have cut edges.

Theorem 3.21. Let H = (V,E) be a hypergraph such that the degree of each vertex and the
cardinality of each edge are even. If e is a cut edge of H, then every connected component
of H − e contains an even number of vertices of e. In particular, H has no strong cut edges.
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Proof. Suppose e is a cut edge of H, and let H1 = (V1, E1) be any connected component
of H − e. Furthermore, let r = |e ∩ V1|. Then

∑
v∈V1

degH1
(v) = (

∑
v∈V1

degH(v)) − r =∑
f∈E1

|f |. Since
∑

v∈V1
degH(v) and

∑
f∈E1

|f | are both even, so is r. Thus e intersects every
connected component in an even number of vertices, and hence by Corollary 3.18 cannot be
a strong cut edge.

We now turn our attention to cut vertices. Recall that the vertex-deleted subhypergraph
H\v is obtained from H by deleting v from the vertex set, as well as from all edges containing
v, and then discarding any resulting empty edges.

Definition 3.22. A cut vertex in a hypergraph H = (V,E) with |V | ≥ 2 is a vertex v ∈ V
such that c(H\v) > c(H).

Before we can prove a result similar to Lemma 3.15 for cut vertices, we need to examine
the relationship between cut vertices and cut edges of a hypergraph and its dual, as well as
the relationship between cut vertices and cut edges of a hypergraph and cut vertices of its
incidence graph.

Theorem 3.23. Let H = (V,E) be a hypergraph without empty edges, and G = G(H) be its
incidence graph.

1. Take any e ∈ E. Then e is a cut edge of H if and only if it is a cut vertex of G.

2. Let |V | ≥ 2 and take any v ∈ V such that {v} ̸∈ E. Then v is a cut vertex of H if and
only if it is a cut vertex of G.

Proof. 1. By Lemma 2.8, we have G(H − e) = G\e. Since H, and hence H − e, has no
empty edges, Corollary 3.13 tells us that c(H) = c(G) and c(H − e) = c(G(H − e)).
Hence c(H − e) = c(G\e). Thus c(H − e)− c(H) = c(G\e)− c(G), and it follows that
e is a cut edge of H if and only if it is a cut vertex of G.

2. SinceH has no empty edges and {v} ̸∈ E, Lemma 2.8 shows that G(H\v) = G\v. Since
H and H\v have no empty edges, Corollary 3.13 gives c(H) = c(G) and c(H\v) =
c(G(H\v)), respectively. Hence c(H\v)− c(H) = c(G\v)− c(G), and v is a cut vertex
of H if and only if it is a cut vertex of G.

In the next corollary, recall that we denote the dual of a hypergraph H = (V,E) by
HT = (ET , V T ), where ET is the set of labels for the edges in E, V T = {vT : v ∈ V }, and
vT = {e ∈ ET : v ∈ e} for all v ∈ V .

Corollary 3.24. Let H = (V,E) be a non-empty hypergraph with neither empty edges nor
isolated vertices, and let HT be its dual.

1. Let |E| ≥ 2 and let e ∈ E be an edge without pendant vertices. Then e is a cut edge of
H if and only if e is a cut vertex of HT .

2. Let |V | ≥ 2 and let v ∈ V be such that {v} ̸∈ E. Then v is a cut vertex of H if and
only if vT is a cut edge of HT .
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Proof. 1. First, since H has no empty edges, by Theorem 3.23, e is a cut edge of H if
and only if it is a cut e-vertex of G(H), and hence if and only if e is a cut v-vertex of
G(HT ). On the other hand, since e contains no pendant vertices of H, we have that
{e} ̸∈ V T . Also, HT has no empty edges since H has no isolated vertices. Hence by
Theorem 3.23, e is a cut vertex of HT if and only if e is a cut v-vertex of G(HT ). The
result follows.

2. By Theorem 3.23, since H has no empty edges and {v} ̸∈ E, vertex v is a cut vertex
of H if and only if v is a cut v-vertex of G(H), and hence if and only if vT is a cut
e-vertex of G(HT ). Again by Theorem 3.23, since HT has no empty edges, this is the
case if and only if vT is a cut edge of HT .

Corollary 3.25. Let H = (V,E) be a hypergraph with |V | ≥ 2, |E| ≥ 1, and with neither
empty edges nor isolated vertices. Furthermore, let v be a cut vertex such that {v} ̸∈ E.
Then c(H\v) ≤ c(H) + degH(v)− 1.

Proof. Consider the dual HT of H. Since v is a cut vertex of H and {v} ̸∈ E, by Corol-
lary 3.24, the edge vT of HT is a cut edge, and hence c(HT − vT ) ≤ c(HT ) + |vT | − 1
by Lemma 3.15. By Corollary 3.13 we have c(HT ) = c(H), and by Lemma 2.4, we have
|vT | = degH(v). It remains to show that c(HT − vT ) = c(H\v). Using Corollary 3.13 and
Lemma 2.8, we have

c(HT − vT ) = c(G(HT − vT )) = c(G(HT )\vT ) = c(G(H)\v)) = c(G(H\v)) = c(H\v)

since HT − vT has no empty edges, since G(HT − vT ) = G(HT )\vT , and since G(HT )\vT is
isomorphic to G(H)\v, which in turn is equal to G(H\v) because {v} ̸∈ E.

We conclude that c(H\v) ≤ c(H) + degH(v)− 1.

A graph with a cut edge and at least three vertices necessarily possesses a cut vertex.
Here is the analogue for hypergraphs.

Theorem 3.26. Let H = (V,E) be a hypergraph with a cut edge e such that for some
non-trivial connected component H ′ of H − e, we have |e ∩ V (H ′)| = 1. Then H has a cut
vertex.

Proof. We may assume H is connected. Let H ′ and H ′′ be two connected components of
H− e, with H ′ non-trivial and e∩V (H ′) = {u}. Take any x ∈ V (H ′)−{u} and y ∈ V (H ′′).
Since e is a cut edge, every (x, y)-path P in H must contain the edge e, and since u is the
only vertex of e in V (H ′), any such path P must also contain u as an anchor vertex. Hence
x and y are disconnected in H\u, and u is a cut vertex of H.

Corollary 3.27. Let H = (V,E) be a connected hypergraph with a strong cut edge e such
that |e| < |V |. Then H has a cut vertex.

Proof. Let H1, . . . , Hk be the connected components of H − e. By Theorem 3.17, the edge
e contains exactly one vertex from each Hi (for i = 1, . . . , k), and so k = |e| < |V |. Hence
|V (Hi)| ≥ 2 for at least one connected component Hi, and |e∩V (Hi)| = 1 since e is a strong
cut edge. It follows by Theorem 3.26 that H has a cut vertex.
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3.4 Blocks and non-separable hypergraphs

Throughout this section, we shall assume that our hypergraphs are connected and have no
empty edges. We begin by extending the notion of a cut vertex as follows.

Definition 3.28. Let H = (V,E) be a connected hypergraph without empty edges. A
vertex v ∈ V is a separating vertex for H if H decomposes into two non-empty connected
hypersubgraphs with just vertex v in common. That is, H = H1⊕H2, where H1 and H2 are
two non-empty connected hypersubgraphs of H with V (H1) ∩ V (H2) = {v}.

Theorem 3.29. Let H = (V,E) be a connected hypergraph without empty edges, with |V | ≥ 2
and v ∈ V .

1. If v is a cut vertex of H, then v is a separating vertex of H.

2. If v is a separating vertex of H and {v} ̸∈ E, then v is a cut vertex of H.

Proof. 1. Assume v is a cut vertex of H, let V1 be the vertex set of one connected com-
ponent of H\v, and let V2 = V (H\v) − V1. Furthermore, let H1 and H2 be the sub-
hypergraphs induced by the sets V1 ∪ {v} and V2 ∪ {v}, respectively, so that E(Hi) =
{{e ∩ (Vi ∪ {v}) : e ∈ E, e ∩ (Vi ∪ {v}) ̸= ∅}} for i = 1, 2. Clearly V (H1)∩V (H2) = {v}.
We show thatH1 andH2 are in fact hypersubgraphs ofH with just vertex v in common.

Take any edge e ∈ E and suppose e ∩ Vi ̸= ∅ for both i = 1, 2. Let e′ = e ∩ (V1 ∪ V2).
Then e′ is an edge of H\v with vertices in both V1 and V2, contradicting the fact that
V1 is a connected component of H\v. Hence either e ⊆ V (H1) or e ⊆ V (H2), and hence
either e ∈ E(H1) or e ∈ E(H2), showing that H decomposes into hypersubgraphs H1

and H2 with just vertex v in common.

To see that each Hi is connected, note that every vertex x ∈ Vi is connected to v in
H, and hence also in Hi. Since H1 and H2 are non-trivial and connected, they must
be non-empty.

Thus v is a separating vertex for H.

2. Assume v is a separating vertex of H such that {v} ̸∈ E. Let H1 and H2 be non-empty
connected hypersubgraphs of H with just vertex v in common such that H = H1⊕H2.
Hence either e ∈ E(H1) or e ∈ E(H2) for all e ∈ E. For each i = 1, 2, since hypergraph
Hi is non-empty and connected without edges of the form {v}, there exists a vertex
vi ∈ V (Hi) − {v} connected to v in Hi. We can now see that vertices v1 and v2 are
connected in H but not in H\v, since every (v1, v2)-path in H must contain v as an
anchor vertex. It follows that H\v is disconnected, and so v is a cut vertex of H.

Observe that the additional condition in the second statement of the theorem cannot be
omitted: a vertex incident with a singleton edge and at least one more edge (which, as
we show below, is necessarily a separating vertex) need not be a cut vertex. A simple
example is a hypergraph H = (V,E) with V = {u, v} and E = {e1, e2} for e1 = {v} and
e2 = {u, v}. Then v is a separating vertex of H since H = H1 ⊕ H2 for H1 = ({v}, {e1})
and H2 = ({u, v}, {e2}), so v is a separating vertex. However, v is not a cut vertex since
H\v = ({u}, {{u}}) is connected.
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Lemma 3.30. Let H = (V,E) be a connected hypergraph without empty edges, with |E| ≥ 2,
and with v ∈ V such that {v} ∈ E. Then v is a separating vertex for H.

Proof. SinceH is connected and has at least two (non-empty) edges, it must have at least two
edges incident with v. Let e1 = {v} and e2 be another edge incident with v. Furthermore,
let H1 = ({v}, {e1}) and H2 = (V,E−{e1}). Then H1 and H2 are two non-empty connected
hypersubgraphs of H with just vertex v in common such that H = H1 ⊕H2. Hence v is a
separating vertex for H.

Recall that in a graph without loops, separating vertices are precisely the cut vertices.
Hence these two terms are equivalent for the incidence graph of a hypergraph. Next, we
determine the correspondence between separating vertices of a hypergraph and separating
vertices (cut vertices) of its incidence graph.

Theorem 3.31. Let H = (V,E) be a connected hypergraph without empty edges, and G =
G(H) be its incidence graph. Take any v ∈ V . Then v is a separating vertex of H if and
only if it is a separating vertex (cut vertex) of G.

Proof. If |V | ≥ 2 and {v} ̸∈ E, then by Theorem 3.29, v is a separating vertex of H if and
only if it is a cut vertex of H and therefore, by Theorem 3.23, if and only if it is a cut vertex
(separating vertex) of G.

Assume e = {v} ∈ E. If v is a separating vertex of H, then it must be incident with
another edge e′. Hence in the graph G\v, vertex e is an isolated vertex and e′ lies in another
connected component, showing that v is a cut vertex for G. Conversely, if v is a cut vertex
of G, then G must contain e-vertices adjacent to v other than e, and hence H contains edges
incident with v other than e. Hence, by Lemma 3.30, v is a separating vertex of H.

The remaining case is that |V | = 1 and {v} ̸∈ E. Then H must be empty, G is a trivial
graph, and v is a separating vertex for neither.

Corollary 3.32. Let H = (V,E) be a connected non-empty hypergraph with neither empty
edges nor isolated vertices, and let HT be its dual. Let v ∈ V and e ∈ E, and let vT and e
be the corresponding edge and vertex, respectively, in HT . Then:

1. v is a separating vertex of H if and only if vT is a cut edge of HT .

2. e is a cut edge of H if and only if it is a separating vertex of HT .

Proof. Observe that by Corollary 3.13, HT is connected since H is. Clearly, it is also non-
empty with neither empty edges nor isolated vertices.

1. By Theorem 3.31, v is a separating vertex of H if and only if it is a cut vertex of its
incidence graph G(H), and by Theorem 3.23, vT is a cut edge of HT if and only if it
is a cut vertex of G(HT ). Since G(H) and G(HT ) are isomorphic with an isomorphism
mapping v to vT , the result follows.

2. Interchanging the roles of H and HT , this statement follows from the previous one.
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We shall now define blocks of a hypergraph, and in the rest of this section, investigate
their properties.

Definition 3.33. A connected hypergraph without empty edges that has no separating
vertices is called non-separable. A block of a hypergraph H is a maximal non-separable
hypersubgraph of H.

Lemma 3.34. Let H be a connected hypergraph without empty edges and B an empty block
of H. Then H = B, and H is empty and trivial.

Proof. Since B is empty and connected, it contains a single vertex, say v. If H is non-
empty, then it contains an edge e incident with v. But then (e, {e}) is a non-separable
hypersubgraph of H that properly contains the block B, a contradiction. Hence H is empty.
Since it is connected, it must also be trivial (that is, V = {v}). Consequently, H = B.

In a graph, every cycle is contained within a block. What follows is the analogous result
for hypergraphs.

Lemma 3.35. Let H be a hypergraph without empty edges, C a cycle in H, and H(C)
and H′(C) the hypersubgraph and subhypergraph, respectively, of H associated with C (see
Definition 3.5). Then H(C) and H′(C) are non-separable.

Proof. As in Definition 3.5, let V (C), Va(C), and E(C) be the sets of vertices, anchors,
and edges of the cycle C, respectively. Recall that H(C) = (V (C), E(C)) and H′(C) =
(Va(C), {{e ∩ Va(C) : e ∈ E(C)}}).

To see that H(C) is non-separable, first observe that it is connected. Let GC be the
incidence graph of H(C). Then GC consists of a cycle CG with v-vertices and e-vertices
alternating, and with additional v-vertices (corresponding to vertices of C that are not
anchors) adjacent to some of the e-vertices of the cycle. Suppose v ∈ V is a separating
vertex of H(C). By Theorem 3.31, v is then a cut v-vertex of GC . Because GC is bipartite,
every connected component of GC\v must contain e-vertices. However, GC\v contains the
cycle CG if v is not an anchor, and the path CG\v if v is an anchor, both containing all
e-vertices of GC . Thus GC\v must have a single connected component, and GC has no cut
vertices, a contradiction. Hence H(C) is non-separable.

Similarly it can be shown that H′(C) is non-separable. (Note that the incidence graph
of H′(C) possesses a Hamilton cycle.)

We are now ready to show that a hypergraph decomposes into its blocks just as a graph
does.

Theorem 3.36. Let H = (V,E) be a connected hypergraph without empty edges. Then:

1. The intersection of any two distinct blocks of H contains no edges and at most one
vertex.

2. The blocks of H form a decomposition of H.

3. The hypersubgraph H(C) associated with any cycle C of H is contained within a block
of H.
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Proof. 1. Suppose B1 and B2 are distinct blocks of H that share more than just a single
vertex. First assume that B1 and B2 have at least two vertices in common, and let
B = B1∪B2. We’ll show B is a non-separable hypergraph. First, B is connected since
B1 and B2 are connected with intersecting vertex sets. Take any v ∈ V (B). Can v be a
separating vertex of B? Since B1 and B2 are non-separable, v is not a separating vertex
in either block, and hence by Theorem 3.29, v is not a cut vertex in either block, and
B1\v and B2\v are connected. Since B\v = (B1\v) ∪ (B2\v), and B1\v and B2\v are
connected with at least one common vertex, it follows that B\v is connected. Hence
v is not a cut vertex of B. If v is a separating vertex of B, then by Theorem 3.29, we
must have e ∈ E(B) for e = {v}. Hence, without loss of generality, e ∈ E(B1). But
then, by Lemma 3.30, v is a separating vertex of B1, because B1 is connected with at
least two vertices and hence at least one more edge incident with v — a contradiction.
Hence B is a non-separable hypersubgraph of H, and since B1 and B2 are maximal
non-separable hypersubgraphs of H, we must have B1 = B2 = B, a contradiction.

Hence B1 and B2 have at most one common vertex. Suppose they have a common edge
e. Then e must be a singleton edge, say e = {v}. If B1 or B2 contains another edge,
then by Lemma 3.30, v is a separating vertex for this block, a contradiction. Hence
B1 = B2 = ({v}, {e}), again a contradiction. We conclude that B1 and B2 have no
common edges and at most one common vertex.

2. If H has an isolated vertex v, then V = {v} and E = ∅, so H is a block. Hence
assume every vertex of H is incident with an edge. Observe that any e ∈ E induces a
hypersubgraph (e, {e}) of H, which is non-separable and hence is a hypersubgraph of
a block of H. Thus every edge and every vertex of H is contained in a block. Since
by the first statement of the theorem no two blocks share an edge, every edge of H is
contained in exactly one block, and H is an edge-disjoint union of its blocks.

3. By Lemma 3.35, the hypersubgraph H(C) of a cycle C is non-separable, and hence a
hypersubgraph of a block of H.

The next lemma will be used several times.

Lemma 3.37. Let H ′ be a connected hypersubgraph of a connected hypergraph H without
empty edges, and v ∈ V (H ′). If H ′ contains edges of two blocks of H that intersect in vertex
v, then v is a separating vertex of H ′.

Proof. Let B1 and B2 be distinct blocks of H intersecting in vertex v such that H ′ contains
an edge from each of them. Note that B1 and B2 must both be non-empty, since otherwise
B1 = B2 = H is empty by Lemma 3.34. If B1 is trivial, then {v} ∈ E(B1) ∩ E(H ′), and v
is a separating vertex of H ′ by Lemma 3.30. Hence assume B1 and B2 are both non-trivial.
Since H ′ is connected, we may assume there exist a vertex x adjacent to v in B1∩H ′ via edge
e1, and a vertex y adjacent to v in B2 ∩H ′ via edge e2. Suppose there exists an (x, y)-path
P in H ′\v. Then Pye2ve1x is a cycle in H ′ containing vertices v, x, and y. By Statement
(3) of Theorem 3.36, these three vertices lie in a common block B, and by Statement (1) of
the same result, B1 = B = B2, a contradiction. Hence x and y must lie in distinct connected
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components of H ′\v. It follows that v is a cut vertex of H ′, and hence a separating vertex
of H ′ by Theorem 3.29.

Theorem 3.38. Let H = (V,E) be a connected hypergraph without empty edges, and v ∈ V .
Then v is a separating vertex of H if and only if it lies in more than one block.

Proof. Assume v is a separating vertex of H. Then H = H1 ⊕ H2, where H1 and H2 are
non-empty connected hypersubgraphs with just vertex v in common. Hence there exist
e1 ∈ E(H1) and e2 ∈ E(H2) such that v ∈ e1 ∩ e2. By Statement (2) of Theorem 3.36, there
exist blocks B1 and B2 of H such that e1 ∈ E(B1) and e2 ∈ E(B2).

Observe that B1 ∩H1 is connected: since B1 is connected, and H1 and H2 intersect only
in the vertex v, every vertex in B1 ∩H1 is connected to v in B1 ∩H1. Similarly, B1 ∩H2 is
connected.

Suppose that B1 = B2. Then B1 = (B1 ∩ H1) ⊕ (B1 ∩ H2) with B1 ∩ H1 and B1 ∩ H2

connected, non-empty, and intersecting only in vertex v — a contradiction, because B1 is
non-separable. Hence B1 and B2 must be distinct blocks of H containing vertex v.

Conversely, assume that v lies in the intersection of distinct blocks B1 and B2 of H. By
Lemma 3.34, B1 and B2 are non-empty. Then H itself is a connected hypersubgraph of H
containing edges from two blocks of H that intersect in v. It follows from Lemma 3.37 that
v is a separating vertex of H.

Theorems 3.36 and 3.38 show that a block graph of a hypergraph can be defined just as
for graphs. Namely, let H be a connected hypergraph without empty edges, S the set of
its separating vertices, and B the collection of its blocks. Then the block graph of H is the
bipartite graph with vertex bipartition {S,B} and edge set {vB : v ∈ S,B ∈ B, v ∈ V (B)}.
From the third statement of Theorem 3.36 it then follows that the block graph of H is a
tree.

Next, we show that blocks of a hypergraph correspond to maximal clusters of blocks of
its incidence graph, to be defined below.

Definition 3.39. Let H = (V,E) be a connected hypergraph without empty edges, and
G = G(H) its incidence graph. A cluster of blocks of G is a connected union of blocks of G,
no two of which share a v-vertex.

Theorem 3.40. Let H = (V,E) be a connected hypergraph without empty edges and H ′ its
hypersubgraph, and let G = G(H) and G′ = G(H ′) be their incidence graphs, respectively.
Then H ′ is a block of H if and only if G′ is a maximal cluster of blocks of G.

Proof. Assume H ′ is a block of H. We first show that G′ = G(H ′) is a cluster of blocks
of G. Let C be the union of all blocks of G that have a common edge with G′. Observe
that since H ′ is connected and has no empty edges, G′ is connected by Theorem 3.11, and
consequently C is connected. Suppose that two distinct blocks of C, say B1 and B2, share
a v-vertex of G. Since G′ contains an edge from both B1 and B2, v is a separating vertex of
G′ by Lemma 3.37. However, by Theorem 3.31, v is then a separating vertex of the block
H ′ of H, a contradiction.

Hence no two distinct blocks in C intersect in a v-vertex, and C is a cluster of blocks of
G. Let C∗ be a maximal cluster of blocks of G containing C. Then C∗ is connected, and
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has no separating v-vertices by Theorem 3.38. Since C∗ is maximal, no e-vertex of C∗ can
be contained in a block not in C∗. Consequently, for every e-vertex e of C∗, all edges of the
form ev (for v ∈ V ) are contained in C∗. Hence, by Lemma 2.7, C∗ is the incidence graph
of a hypersubgraph H∗ of H. Now H∗ is connected and has no separating vertices since
C∗ is connected and has no separating v-vertices. Moreover, H∗ contains the block H ′. We
conclude that H∗ = H ′ and C∗ = G′. It follows that G′ is a maximal cluster of blocks of G.

Conversely, let G′ be a maximal cluster of blocks of G. Then for every e-vertex e of G′,
all edges of G of the form ev (for v ∈ V such that v ∈ e) must be in G′, so by Lemma 2.7,
G′ = G(H ′) for some hypersubgraph H ′ of H. Since G′ is connected and has no separating
v-vertices, H ′ is connected and non-separable. Hence H ′ is contained in a block B of H. By
the previous paragraph, G(B) is a maximal cluster of blocks of G, and it also contains the
maximal cluster G′. We conclude that G(B) = G′, that is, G′ is the incidence graph of a
block of H.

The next corollary is immediate.

Corollary 3.41. Let H = (V,E) be a connected hypergraph without empty edges, and G =
G(H) its incidence graph. Then H is non-separable if and only if G is a cluster of blocks of
G.

To complete the discussion on the blocks of the incidence graph of a hypergraph, we show
the following.

Theorem 3.42. Let H = (V,E) be a non-separable hypergraph with at least two edges of
cardinality greater than 1. Let G = G(H) be its incidence graph and x a cut vertex of G.
Then x ∈ E and x is a weak cut edge of H.

Proof. If x ∈ V , then x is a separating vertex of H by Theorem 3.31, a contradiction. Hence
x ∈ E, and x is a cut edge of H by Theorem 3.23. Suppose x is a strong cut edge. If
|x| < |V |, then H has a cut vertex by Corollary 3.27, amd hence a separating vertex by
Theorem 3.29, a contradiction. Hence |x| = |V |, and by Theorem 3.17, H − x has exactly
|x| connected components, implying that x is the only edge of H of cardinality greater than
1, a contradiction. Hence x must be a weak cut edge of H.

In the last four theorems we attempt to generalize the following classic result from graph
theory.

Theorem 3.43. [5]

1. A connected graph is non-separable if and only if any two of its edges lie on a common
cycle.

2. A connected graph with at least three vertices has no cut vertex if and only if any two
of its vertices lie on a common cycle.

Theorem 3.44. Let H = (V,E) be a non-separable hypergraph with |V | ≥ 2 and |E| ≥ 2,
and let G = G(H) be its incidence graph. Assume in addition that V ̸∈ E and that H has
no weak cut edges. Then any two distinct vertices of H and any two distinct edges of H lie
on a common cycle.
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Proof. Suppose that G has a separating vertex x. If x ∈ V , then by Theorem 3.31, x
is a separating vertex of H, a contradiction. Thus x ∈ E, and x is a cut edge of H by
Theorem 3.23. By assumption, x is a strong cut edge and |x| < |V |. Hence H has a cut
vertex, and hence a separating vertex, by Corollary 3.27 and Theorem 3.29, respectively —
a contradiction.

Hence G has no cut vertex, and by Theorem 3.43, any two vertices of G lie on a common
cycle. It then follows from Lemma 3.6 that any two vertices (and any two edges) of H lie
on a common cycle.

Theorem 3.45. Let H = (V,E) be a connected hypergraph with |V | ≥ 2, without edges of
cardinality less than 2, and without vertices of degree less than 2. Then the following are
equivalent:

1. H has no separating vertices and no cut edges.

2. Every pair of elements from V ∪ E lie on a common cycle.

3. Every pair of vertices lie on a common cycle.

4. Every pair of edges lie on a common cycle.

Proof. Let G = G(H) be the incidence graph of H.
(1) ⇒ (2): Since H has no separating vertices and no cut edges, G has no cut vertices by

Theorems 3.31 and 3.23. Hence by Theorem 3.43, since |V (G)| ≥ 3, every pair of vertices
of G lie on a common cycle in G, and therefore every pair of elements from V ∪ E lie on a
common cycle in H.

(2) ⇒ (3): This is obvious.
(3) ⇒ (4): Since every pair of vertices of H lie on a common cycle in H, every pair of

v-vertices of G lie on a common cycle in G. Consequently, by Theorem 3.36, all v-vertices of
G are contained in the same block B, and if G has any other blocks, then they are isomorphic
to K2. Let B1 be one of these “trivial” blocks, and let e be its e-vertex. Then degG(e) = 1
— a contradiction, since H has no singleton edges. It follows that G has no “trivial” blocks,
and hence no cut vertices. Therefore every pair of e-vertices of G lie on a common cycle in
G, and every pair of edges of H lie on a common cycle in H.

(4) ⇒ (1): Since every pair of edges of H lie on a common cycle in H, every pair of
e-vertices of G lie on a common cycle in G. Consequently, all e-vertices of G are contained in
the same block B, and if G has any other blocks, then they are isomorphic to K2. Let B1 be
one of these “trivial” blocks, and let v be its v-vertex. Then degG(v) = 1 — a contradiction,
since H has no pendant vertices. It follows that G has no “trivial” blocks, and hence no cut
vertices. Therefore H has no separating vertices and no cut edges by Theorems 3.31 and
3.23, respectively.

Theorem 3.46. Let H = (V,E) be a connected hypergraph with |V | ≥ 2, without edges of
cardinality less than 2, and without vertices of degree less than 2. Then the following are
equivalent:

1. H has no cut edges.
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2. Every pair of elements from V ∪ E lie on a common strict closed trail.

3. Every pair of vertices lie on a common strict closed trail.

4. Every pair of edges lie on a common strict closed trail.

Proof. Let G = G(H) be the incidence graph of H.
(1) ⇒ (2): Since H has no cut edges, G has no cut e-vertices by Theorem 3.23. Take

any two elements x0 and xk of V ∪ E. We construct a strict closed trail in H containing
x0 and xk as follows. Let B1 and Bk be blocks of G containing x0 and xk, respectively, and
let P = B1x1B2 . . . Bk−1xk−1Bk be the unique (B1, Bk)-path in the block tree of G. Here,
of course, B1, . . . , Bk are blocks of G, x1, . . . , xk−1 are separating (cut) vertices of G, and
each separating vertex xi (necessarily a v-vertex) is shared between blocks Bi and Bi+1. (We
may assume that vertex x0 does not lie in block B2, and xk does not lie in Bk−1, otherwise
the path P may be shortened accordingly.) By Theorem 3.43, each pair of vertices xi−1

and xi, for i = 1, . . . , k, lie on a common cycle Ci within block Bi. Note that these cycles
C1, . . . , Ck are pairwise edge-disjoint and intersect only in the v-vertices x1, . . . , xk−1. Let
T = C1⊕. . .⊕Ck. Then T is a closed trail in G containing x0 and xk that does not repeat any
e-vertices. (We count the first and last vertex of a closed trail — which are identical — as
one occurrence of this vertex.) We conclude that every pair of vertices of G lie on a common
closed trail in G that traverses each e-vertex at most once. Therefore, by Lemma 3.6, every
pair of elements from V ∪ E lie on a common strict closed trail in H.

(2) ⇒ (3): This is obvious.
(3) ⇒ (4): Since every pair of vertices of H lie on a common strict closed trail in H,

every pair of v-vertices of G lie on a common closed trail in G that visits each e-vertex at
most once. Suppose G has a cut e-vertex e. Let let v1 and v2 be two v-vertices in distinct
connected components of G\e. Since e is a cut vertex, v1 and v2 are disconnected in G\e.
On the other hand, by assumption, v1 and v2 lie on a closed trail T that traverses e at most
once. Hence T\e contains a (v1, v2)-path of G\e, a contradiction. Consequently, G has no
cut e-vertices, which implies (as seen in the previous paragraph) that any two vertices —
and hence any two e-vertices — lie on a common closed trail in G that does not repeat any
e-vertices. Therefore every pair of edges of H lie on a common strict closed trail in H.

(4) ⇒ (1): Since every pair of edges of H lie on a common strict closed trail in H, every
pair of e-vertices of G lie on a common closed trail in G that has no repeated e-vertices.
SupposeG has a cut e-vertex e. SinceH has no vertex of degree less than 2, G\e has no trivial
connected components; that is, each connected component of G\e contains an e-vertex. Let
e1 and e2 be two e-vertices from distinct connected components of G\e. Then e1 and e2 are
disconnected in G\e. On the other hand, by assumption, e1 and e2 lie on a closed trail T
that traverses e at most once. Hence T\e contains an (e1, e2)-path of G\e, a contradiction.
It follows that G has no cut e-vertices, and H has no cut edges by Theorem 3.23.

We conclude with the dual version of the previous theorem.

Corollary 3.47. Let H = (V,E) be a connected hypergraph with |E| ≥ 2, without edges of
cardinality less than 2, and without vertices of degree less than 2. Then the following are
equivalent:
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1. H has no separating vertices.

2. Every pair of elements from V ∪ E lie on a common pseudo cycle.

3. Every pair of edges lie on a common pseudo cycle.

4. Every pair of vertices lie on a common pseudo cycle.

Proof. Let HT be the dual of H, and observe that (by Corollary 3.13 and since H must
have at least 2 vertices) HT satisfies the assumptions of Theorem 3.46. Since separating
vertices of H correspond precisely to cut edges of HT by Corollary 3.32, and pseudo cycles
of H correspond to strict closed trails of HT by Lemma 3.7, the corollary follows easily from
Theorem 3.46.

4 Conclusion

In this paper, we generalized several concepts related to connection in graphs to hyper-
graphs. While some of these concepts generalize naturally in a unique way, or behave in
hypergraphs similarly to graphs, other concepts lend themselves to more than one natural
generalization, or reveal surprising new properties. Many more concepts from graph theory
remain unexplored for hypergraphs, and we hope that our work will stimulate more research
in this area.
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[1] M. A. Bahmanian, M. Šajna. Hypergraphs: connection and separation. ArXiv:1504.04274
[math.CO].

[2] C. Berge. Graphs and Hypergraphs. North-Holland, New York, 1976.

[3] C. Berge. Hypergraphs, Combinatorics of Finite Sets. North-Holland Mathematical
Library 45, North-Holland Publishing, Amsterdam, 1989.

[4] J. A. Bondy, U. S. R. Murty. Graph Theory with Applications. American Elsevier
Publishing, New York, 1976.

[5] J. A. Bondy, U. S. R. Murty. Graph Theory. Graduate Texts in Mathematics 244,
Springer, New York, 2008.

23

Bahmanian and Sajna: Connection and separation in hypergraphs

Published by Georgia Southern Commons, 2015



[6] A. Bretto. Hypergraph Theory, an Introduction. Springer, 2013.

[7] P. Duchet. Hypergraphs, in Handbook of Combinatorics, edited by R. L. Graham, M.
Grötschel, and L. Lovász. Elsevier, Amsterdam, 1995.

[8] V. I. Voloshin. Coloring Mixed Hypergraphs: Theory, Algorithms and Applications. Fields
Institute Monographs 17, American Mathematical Society, Providence, RI, 2002.

[9] V. I. Voloshin. Introduction to Graph and Hypergraph Theory. Nova Science Publishers,
New York, 2009.

24

Theory and Applications of Graphs, Vol. 2, Iss. 2 [2015], Art. 5

https://digitalcommons.georgiasouthern.edu/tag/vol2/iss2/5
DOI: 10.20429/tag.2015.020205


	Connection and separation in hypergraphs
	Recommended Citation

	Connection and separation in hypergraphs

