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Approximate mean-field equations of motion for quasi-two-dimensional
Bose-Einstein-condensate systems

Mark Edwards,' Michael Krygier,1 Hadayat Seddiqi,1 Brandon Benton,! and Charles W. Clark?
' Department of Physics, Georgia Southern University, Statesboro, Georgia 30460-8031 USA

2 Joint Quantum Insitute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899, USA

(Received 29 August 2012; published 26 November 2012)

We present a method for approximating the solution of the three-dimensional, time-dependent Gross-Pitaevskii
equation (GPE) for Bose-Einstein-condensate systems where the confinement in one dimension is much tighter
than in the other two. This method employs a hybrid Lagrangian variational technique whose trial wave function
is the product of a completely unspecified function of the coordinates in the plane of weak confinement and
a Gaussian in the strongly confined direction having a time-dependent width and quadratic phase. The hybrid
Lagrangian variational method produces equations of motion that consist of (1) a two-dimensional (2D) effective
GPE whose nonlinear coefficient contains the width of the Gaussian and (2) an equation of motion for the width
that depends on the integral of the fourth power of the solution of the 2D effective GPE. We apply this method
to the dynamics of Bose-Einstein condensates confined in ring-shaped potentials and compare the approximate
solution to the numerical solution of the full 3D GPE.

DOI: 10.1103/PhysRevE.86.056710

I. INTRODUCTION

Recent advances in laser-control technology have enabled
the laboratory realization of Bose-Einstein-condensate (BEC)
systems subjected to all-optical potentials which provide
strong confinement in a horizontal plane and an arbitrary
potential within this plane. These potentials can be produced
by a combination of a horizontal light sheet with a rapidly
moving red- or blue-detuned vertical laser that “paints”
an arbitrary time-averaged optical dipole potential in the
horizontal plane [1]. Horizontal light sheets can also be
combined with vertically propagating beams in specialized
laser modes, such as Laguerre-Gauss modes, to produce other
types of novel potential [2]. In addition to providing strong
vertical confinement and counteracting the effect of gravity, the
light sheet provides stabilization against dynamic excitations
of the condensate [3] as well as thermal phase fluctuations [4].

The ability to create and probe quasi-two-dimensional
(quasi-2D) BECs in arbitrary 2D potentials is motivated by
several areas of current ultracold atom research. For example,
condensates in toroidal traps and ring lattices can be studied.
Stable states of multiple vortices and persistent currents can
be created and studied by stirring the condensate [2,5,6].
There are proposals for creating ring lattices and for studying
nonequilibrium phase transitions within this geometry [7-9].
Toroidal geometries are well suited for studying topological
defects that may appear during a rapid cooling process that
produces a condensate [10,11]. There is some indication that
stirring within a ring-lattice geometry can produce a coherent
superposition of states with different circulation which can
lead to a reduction in the threshold of the Mott-insulator
phase transition [12]. These systems also offer an excellent
finite-sized testbed for systems of ultracold atoms that mimic
condensed-matter systems [13].

Quasi-2D BECs may also provide a convenient platform
for studying systems of ultracold neutral atoms that are
analogs of electronic materials, devices, and circuits [14]. Such
systems are called “atomtronic” because strongly interacting
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Bose gases in a lattice potential are analogous to “electronic”
systems of electrons moving in the periodic lattice potential of
acrystalline solid. The ability to produce arbitrary potentials in
the plane of a quasi-2D condensate may enable the controlled
study of novel atomtronic systems. In particular it may be
possible to produce circuitlike potentials within the plane.

The behavior of many of the above-mentioned ultracold
bosonic systems can be described using mean-field theory.
In this case, the governing equation is the time-dependent
Gross-Pitaevskii equation (TDGPE) [15,16]. This is a partial
differential equation in three space variables and one time
variable whose solution represents the wave function of the
single-particle orbital that all of the condensate atoms occupy.
Experiments conducted on these systems typically involve
releasing the condensate for imaging. In this case solution
of the 3D TDGPE becomes a challenging numerical problem
due to the volume that must be accounted for in simulating the
experiment.

In this paper, we present a variational approximation to
the solution of the TDGPE for these quasi-2D systems which
produces equations of motion whose numerical solution can
be obtained 100 to 1000 times faster than solving the full
3D TDGPE. This approximation is based on a variant of the
standard Lagrangian variational method (LVM) [17] in which
some of the variational parameters are functions of the space
coordinates and time while others are only functions of time.
The work presented here applies this “hybrid” version of the
LVM to a quasi-2D system of bosonic atoms. The hybrid LVM
was previously applied to a quasi-1D system where only one
dimension was weakly confined compared to the two other
dimensions [18].

This paper is organized as follows. In Sec. II we describe the
LVM and its hybrid form and derive the approximate equations
of motion. We also derive the equations that provide the proper
variational stationary solution in which a condensate is trapped
in a confining potential. Section III presents a comparison of
the solution of the hybrid LVM equations of motion with the
numerical solution of the 3D TDGPE for a BEC confined in a
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ring-shaped potential. The parameters for this example system
were taken from an actual experiment. Section IV presents a
summary of the work.

II. TWO-DIMENSIONAL HYBRID LVM EQUATIONS
OF MOTION

The condensate wave function of a BEC that is strongly
confined in one dimension (the z direction) relative to the
confinement in the other two dimensions (the xy plane) can
often be approximated as the product of a function of x and
y only with a Gaussian function of z only. In the mean-field
approximation, the actual behavior of the condensate wave
function is governed by the 3D, time-dependent, Gross-
Pitaevskii equation. However, it is possible to find equations of
motion from which the approximate product wave function can
be constructed at each moment of time using the Lagrangian
variational method. We briefly describe this method next.

A. The Lagrangian variational method

The Lagrangian variational method provides approximate
solutions to the 3D TDGPE in the form of equations of motion
for time-dependent parameters that appear in an assumed trial
wave function. Thus, in the standard LVM, the exact solution of
the 3D TDGPE requiring the solution of a partial differential
equation in three space and one time variables is traded for
the solution of ordinary differential equations in time for
the variational parameters of a trial wave function of fixed
functional form.

The 3D TDGPE can be written as

1Y P Gy v ot NPy, ()
or T Tom rap g :

where M is the mass of a condensate atom, g = 4xh’a/M is
the interaction strength of low-energy binary scattering events
with a being the s-wave scattering length, N is the number of
atoms in the condensate, and Vi, (r) is the external potential.
The TDGPE is itself a variational equation of motion and is
derived from the following Lagrangian density:

1 n?
LIV] = Eih(ww;‘ — U, + o Z i,

n=x,y,zZ
* 1 *\2 2

+ V(DWW 4 SgN(PT)(W), 2

where ¥, = 0W/dn and n = x,y,z,t. The associated Euler-

Lagrange equation that produces the TDGPE with the above
Lagrangian density is given by

Zi<a£>—a£=o. 3
owr ) wr

d
n=x,y.zt O

The LVM is an approximation method that produces an
equation of motion for the n time-dependent variational
parameters q(?), ...,q,(¢t) appearing in a given trial wave
function ¥ = Yyia(r; q1, - . . ,g,). The equations of motion
for these parameters are obtained by inserting the trial wave
function into the LVM Lagrangian density, integrating this
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over the spatial variables,

Liva@i (1), .. qu(1)) = / Er LlVwamDl, ()

and applying the usual Euler—Lagrange equations,

d (dLym)  dLiym
dr\ 9q; dq,

This is the standard Lagrangian variational method [17].

The LVM can be regarded as having two limits in terms of
the chosen trial wave function. The first limit consists of choos-
ing a trial wave function where the variational “parameter” is
W(r,t). This choice enables the variational solution to vary in
any possible way. As noted above, when Eq. (3) is applied to the
Lagrangian density £[W] to derive the equation of motion, it
turns out to be the full TDGPE. In the other limit, the trial wave
function is chosen to have a fixed functional form of the spatial
coordinates where the time dependence resides entirely within
a set of variational parameters, so that the Lagrangian depends
only on these parameters, Lyvm[q1, - - - ,g»]- The shape of this
trial wave function can be varied only by changing the values
of the g;. The equations of motion for the g;(¢) are ordinary
differential equations in time and are obtained from the usual
Euler-Lagrange equations (5). It is also possible to choose
a “hybrid” trial wave function that plots a course midway
between these two limits. We describe this approach now.

=0, j=1,....n. (5

B. The hybrid LVM

The hybrid Lagrangian variational method (HLVM) is an
LVM in which the trial wave function consists of a completely
unspecified function of some of the spatial coordinates
¢(x,y,t) multiplied by a fixed function of the rest of the
coordinates that also contains some time-dependent variational
parameters q;(¢), ...,q,(t). The HLVM is expected to apply
to systems where there is tight confinement in one or two
dimensions. The coordinates appearing in ¢ are those for
which the confinement is weak while the trial wave function is
assumed to be Gaussian in the coordinates of tight confinment.
The HLVM for tight confinement in two dimensions has been
studied earlier [18]. Here we study the case where there is tight
confinement in one dimension only.

Coupled equations of motion can be derived from a hybrid
Lagrangian which is constructed by integrating the Lagrangian
density £ in Eq. (2) over the space coordinate(s) of the tightly
confined direction(s). The resulting hybrid Lagrangian can be
used to derive coupled equations of motion for both ¢ and the
set of variational parameters {q, . ..,q.}.

Before proceeding with the derivation of these equations
of motion, we will first introduce scaled variables and rewrite
the LVM equations in terms of these variables. Scaled units
are referenced to a chosen unit of length, denoted by L, and
scaled spatial coordinates are given by

X Y X
Lo T Lo ‘T Lo
Energy and time units are defined in terms of L, enabling the
definition of a scaled time:

h* h t

=—— Th=—, =—.
wmr? T E Ty

(6)

X

)

Ey
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Hereafter symbols with overbars will denote quantities ex-
pressed in their appropriate scaled units. It will also be
convenient to express the solution of the 3D TDGPE in terms
of scaled units:

W(r,1) = Ly P O(FD). (8)
In terms of these variables the TDGPE becomes
0D (E)ZCD 2o 3%

— = — 4+ — + — ) + Viur® + gN|D|* D,
i ax2+ay2+azz>+ wap® + EN|P]
9

where § = g/(EoL}). In scaled units, the Lagrangian density
takes the form

LI®] = Li(@®} — &*Pp) + (PL1D; + OLD; + BID;)

+ Vieap @*® + 1ZN(P*)* D2, (10)
and the scaled Euler-Lagrange equation becomes
d (3L oL
2 a_(aq>*>_ac1>* =0. an
n=x,y,Z,7 n n

Now we turn to the description of the hybrid Lagrangian
variational method.

In deriving the HLVM equations of motion we will
assume that the trapping potential can be written (at least
approximately) as the sum of a part that depends only on the
loosely confined coordinates (here x and y) and a part that is
harmonic in the tightly bound direction. Under this assumption
we can write the potential as

Viap(%,5,2) = V|(X,5) + 1°Z2, (12)

where A is the strength of the vertically confining harmonic
potential. This form of the potential applies in many realistic
experimental cases such as the painted potentials mentioned
earlier.

The trial wave function for the HLVM equations of motion
is written as follows:

Pial (X, 5,2,0) = (X, §,DA(F)e 20 OHFOT —(13)

Here the trial wave function is a product of a completely
unspecified function ¢(x, y,7) with a Gaussian function having
a time-dependent width w(f) and quadratic phase coefficient
B(f). These are the variational parameters that will appear in
the HLVM equations of motion. The parameter A(f) is an
overall factor that will later be eliminated via normalization.

The presence of the quadratic phase parameter B(f) enables
the modeling of the expansion of the condensate when released
from the trap, a probe that is often used in experiment. Since
the velocity distribution of the condensate is given by the
gradient of the phase, there can be no transverse motion
without this parameter being present. The presence of this term
also distinguishes this work from another similar variational
formulation, described in Refs. [19,20], where the transverse
Gaussian width varies in space but is fixed in time.

The first step in the hybrid LVM consists of constructing
a hybrid Lagrangian by integrating only over the spatial
coordinate along which the system is strongly confined:
oo

Logoralhs A, 0,B] = / dZLIpAc PR (14)

—00
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The resulting hybrid Lagrangian is given by
Liybrial®, 0, B]
i * * * *
= 5@ — &b + $réx + O3¢5

* l*—2 1 2.2 7 12—2

+1-N(¢*)2<¢)2( ! ) (15)
28 inw)

In the above we have eliminated the variational parameter A
using the normalization constraint

/ &’r|®1> = (/oo dx /oo dy|¢|2>(|A|2n1/2w) =1

and by requiring that the separate parts of the product wave
function be separately normalized to unity:

o0 o0
/ dx/ dylgl* =1, |APa"?w =1. (16)
—00 —00

The second step in the HLVM is to apply the Euler-
Lagrange equations of motion to Lyyuig to obtain the equations
of motion. The equation for ¢ is a modified version of Eq. (11):

i_ 3 Lgbrid _I_i_ 3 Lgbrid _al:hybrid _o. (17
AN oy \ 097 ¢

and the Euler-Lagrange equations for w and B are the usual
ones:

d <3Zhybﬁd> B 3 Liybria

= =0, =w,B. 18
i\ o 3q g=wp. 19

Applying Eq. (17) yields the following equation for ¢:

A (P P\ o gN 2
15 = _(W + 8_)72> + V(x, )¢ + («/Eﬁ)>|¢| 0]
+ F()é, (19)
where
1 1 I
F() = E,Bu)z to 28%w* + Ekzwz. (20)

This seemingly complicated function of 7 can be transformed
away by defining

B(F.5.1) = G(E.5.0e b FOHT Q1)

Inserting this into the equation of motion for ¢ yields an
effective 2D Gross-Pitaevskii-like equation for ¢:

¢ (0% 0@ o N \ -
ZE_—(ﬁ+a—y2)+vu,y>¢+<mw)l¢l é.

(22)

Applying the Euler-Lagrange equation for B gives the
following result:

(%W) (%wz) + |p*(wi — 4Bw?) = 0. (23)
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We can obtain a simplified equation of motion by integrating
both sides of the above over all ¥ and y:

L [ us [ arliop
(2”’ )/_wdy /_w arrd
= (W —45@2)/00 dy /oo dx|¢|>. (24)

It is easy to show that the integral on the left is zero by using
the equation of motion for ¢. The integral on the right is unity
by normalization and so we obtain the following relationship
between S8 and w,w:

B = (25)

"

4w°

Thus, if w and w are known, B is determined.
Applying the Euler-Lagrange equation for w gives

|¢|2<Bw - % + 4B + ﬁw) = lgN|¢|“( 1 )
w 2 V2mw?
(26)

Integrating this equation over all (¥, 7) on both sides as before,
we obtain

s Y 1 _ gNU,
w44 zw———l—kzw=—, 27
potap w? 2V27w? @n
where
oo o0 -
Uy = / dy / dx|$x,3,01". (28)
—00 —00

Note that we have used Eq. (21) to replace ¢ with .

It is possible to eliminate 8 from the above equation by
differentiating both sides of Eq. (25) with respect to time. We
obtain

1 . = - . - -

i = Bw + B = Bw + 4B*w, (29)
where the second equality results from using Eq. (25) to replace
w with 48w. Now we see that the right-hand side of the above
equation is identical to the first two terms on the left-hand side
of Eq. (27). Thus we can rewrite this equation as follows:

«/2/7T§NUH.

11_)2

. 4
W+ 4270 = — + (30)
o

This is the final equation of motion for w.

C. The HLVM equations of motion and the variational
initial state

The full set of HLVM equations of motion consist of a 2D
effective GP-like equation for ¢:

a“‘ 82~ 32~ _ - oN ~ o~
;29 _ _(_¢ + _‘f’) +VENG + ( g )|¢|2¢

ar  \ax?  9y? V2rw
(3D
and an equation for w:
. 4 J2/mgNU
w+4x2-=__3+#. (32)
w w

These two equations form a closed system from which w (%),
w(f), and ¢(X,y,7) can be obtained. From these, the values of
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B(?) and F(f) can be calculated:

w 1. 1 ~ 1

F(P) = - B 23202 + 22w
e () 2ﬂw+2w2+ /3w+2 w
(33)

Using these quantities, the full value of the variational trial
wave function can be constructed:

B:

1 12 o
Dyial(X,5,2,7) = (T) . 5,De” JTF@)dr
/2y
x ¢~ TR OHBOT (34)
where
o0 o0 B
Uu(f)z/ di/ dx|p(E. 5.0, (35)
oo o

Note that Egs. (31) and (32) are coupled. The nonlinear term
in the 2D GPE for (]3 contains the Gaussian width, w, while the
equation for w contains the factor U which is the integral of
the fourth power of ¢.

The final element required for this method to be used
as a means to find an approximation to the solution of
the 3D TDGPE is a set of initial conditions. We present
one possibility here based on the physics of Bose-Einstein-
condensate systems.

In a typical BEC experiment a condensate is formed
in an atom trap. If no further changes in the condensate’s
environment occur, the condensate wave function should then,
in principle, acquire only an overall time-dependent phase as it
evolves in time. In the HLVM this situation should therefore be
represented by the stationary solution of the above equations.
We denote this stationary solution as

$(%,5,0) = §o(%,5) and w(0) = wy. (36)

This solution satisfies the following time-independent equa-

tions:
_ 2py 9% _ ~
= — _— Vv _,_
no <8x2 + 052 ) + V(. 9)¢0
gN ) I
+ ol (37)
( Ty $ol“Po
and
4 V2/mgNU
R(o) = 41 — — — M =0, (38)
Wy Wy
where
o0 o0 _
UH,OE/ dﬁ/ dx|do(x,5)|*. (39
—0Q —0o0

The factor 4 in the equation for ¢y is the chemical potential
of the initial condensate. These equations for the stationary
variational solution must be solved self-consistently.

III. COMPARISON WITH THE 3D GPE

In this section we illustrate the ability of the HLVM
equations of motion to approximate the exact solution of the 3D
TDGPE by comparing the two solutions for a case of current
interest. The system we will consider is that of a Bose-Einstein
condensate of >*Na atoms confined in a ring-shaped potential
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under the same conditions as in a recent experiment [2] of
Ramanathan et al. To simplify the analysis we will compute
only the profile of the condensate density integrated along the
vertical direction for each point in the plane of weak confine-
ment. This quantity predicted by the TDGPE will be compared
with that predicted by the HLVM equations of motion. This is
the quantity that can be compared with experiment.

In the experiment [2] a vertical Laguerre-Gauss (LG) laser
beam (LG(I)) was intersected with a horizontal light sheet.
The shape of the vertical LG beam was approximately a
hollow cylinder with thick walls so that its intersection with
the horizontal light sheet created a ring-shaped region of
maximum light intensity. Tuning the frequency of the beams
to the red of the lowest electronic transition created a potential
that caused the atoms to seek the maximum intensity.

In this comparison, we simulate an experiment in which
a condensate is created in this ring potential, optionally
stirred, and then probed. We simulate two types of probe:
(1) direct release of the condensate by turning off all trapping
potentials after stirring, and (2) release of the condensate after
the rampdown of the Laguerre-Gauss potential. The stirring,
which adds m units of angular momentum to the condensate,
is simulated by phase imprint. That is, the initial condensate
wave function is multiplied by e”"?, where ¢ is the azimuthal
angle around the vertical 7 axis and m is an integer.

In each case we will compare what would be the measured
density profile, as predicted by the 3D GPE and by the HLVM,
for different times during the rampdown or expansion where
the value of m is fixed, and also for a fixed final time of flight
for a range of different m values. For maximum clarity, we
present the two density profiles as a plot of the density along
a line that cuts through the center of the ring. Since all the
density profiles are cylindrically symmetric, these plots will
convey all of the available density information.

(a) TOF =0.0 ms

(b) TOF =2.0 ms

PHYSICAL REVIEW E 86, 056710 (2012)

In these simulations the trap potential is modeled as the
sum of a Laguerre-Gauss optical potential [21] plus a vertical
Gaussian due to the light sheet. This potential can be written
(in scaled units) as

=2 S2
_ o _ 24y
Vlrap(X,y,Z,t_) = —evch(t_)< f2
M

— Vineet + Az = V” x,y)+ 22z2,

)e—(x2+,v2)/f§4
(40)

where the factore = 2.718 . .. isincluded so that Vg becomes
the depth of the potential due to the Laguerre-Gaussian beam
and 7y, is the radial position of its minimum. A time-dependent,
dimensionless turn-on function, 0 < f(7) < 1, is inserted to
simulate the rampdown of the Laguerre-Gauss potential. The
factor Vypee is the depth of the potential due to the light sheet
and the z-dependent Gaussian light-sheet potential has been
approximated by a harmonic oscillator.

Both the 3D TDGPE and the 2D GPE part of the HLVM
equations of motion were solved using the split-step, Crank-
Nicolson method. The 3D TDGPE was solved on a grid in
which there were 400 points along x and y and 200 points
along z. The 2D GPE part of the HLVM equations of motion
was solved on a grid of 800 points along both x and y. The
codes that were used to solve these equations were extensively
modified versions of codes publicly available in the literature
[22]. The initial condensate wave function for the 3D TDGPE
was obtained by solving it in imaginary time. Initial conditions
for the HLVM equation of motion were obtained by solving
Egs. (37) and (38) self-consistently as follows. First, a value for
o was chosen, the associated ¢ was then found by integrating
Eq. (31) in imaginary time, and next the value of U was
calculated which was then used to compute the value of R(w)
in Eq. (38). The value of wy was incremented and the process
was repeated to compute a new value of R. This process was

(c) TOF=4.0 ms

—_ T T 15 T T 15 T T
2 9} GPE—— 4 GPE—— GPE——
= LVM—— 12 } LVM—— | 12 F LVM—— |
=
2 6r 8 9 8 9 8
&
£ st - T | °r |
2 3t . 3| .
%]
3, A /NN o bl —

-60 -30 0 30 60 -60 -30 0 30 60 -60 -30 0 30 60

X (Lm) X (Lm) X (LLm)
(d) TOF = 6.0 ms (e) TOF =8.0 ms (f) TOF =10.0 ms

f;\ 15 T T 15 T T
2 GPE—+— GPE—+—
= 4 12 F LVM—— |
=
=
Pt
N
£
2]
=
2]
=

30 0 30 60

X (Lm)

-30

0 30 60 -30 0 30 60

FIG. 1. (Color online) A comparison of the vertical column density of a Bose-Einstein condensate, as determined by the 3D TDGPE and
the HLVM equations of motion, after direct release from a ring-shaped trap plotted along a line through the trap center (x axis) for various
times of flight (TOFs) during expansion: (a) 0.0, (b) 2.0, (c) 4.0, (d) 6.0, (e) 8.0, and (f) 10.0 ms. The condensate is given one unit of angular

momentum before release by phase imprint.
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(c)m=2

density (arb. units)

10 T

GPE——
LVM——

0 A
-80

0 40 80

40 80

-40 0
X (Lm)
Hm=5
10 T T T
GPE—+—
LVM——

~
p=
=
=
=
bl
<
N’
>
N
‘@
=
]
ﬁ A i
-80 -40 0 40 80
X (Lm)

-40 0 40 80

FIG. 2. (Color online) GPE vs LVM vertical column density comparison for different angular momenta applied to the initial state. The
condensates are formed, stirred to add m units of angular momentum (simulated by phase imprint), and then released and allowed to expand
for 10ms. (a)m =0,(bym =1,(c)m=2,(d)m =3,(e)m =4, and (f)y m = 5.

continued until a root of R(i() was found. The value of wq for
this case is the self-consistent Gaussian width of the stationary
solution of the HLVM equations of motion.

In the direct-release process simulated, the number of
condensate atoms was N = 750000 atoms and the scattering
length of >*Na was taken to be 53 bohrs. The minimum of the
LG potential was set at ryy = 24 um. The depth of the LG
potential was taken to be Vi g = 227 nK, which is equivalent

(a) ramp time = 0.0 ms

(b) ramp time = 10.0 ms

(via Vig = iM w?r?) to a radial harmonic frequency of
,/(2m) = 120 Hz. The frequency of the harmonic light-sheet
potential was taken as w,/(27) = 320 Hz and the light-sheet
depth was Viheer = 473 nK, although this last quantity makes
no difference in the shape of the initial-state density.

Figure 1 displays a comparison of the integrated column
density of a released ring BEC predicted by the 3D TDGPE
with that predicted by the HLVM equations of motion at six

(c) ramp time = 20.0 ms
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FIG. 3. (Color online) GPE and LVM vertical column density comparison for the case where the LG potential is ramped down to 20% of
its initial depth over a span of 50 ms. A phase imprint is applied that simulates one unit of angular momentum added by stirring. The plots
show the comparison for ramp times of (a) 0 ms, (b) 10 ms, (c) 20 ms, (d) 30 ms, (e) 40 ms, and (f) 50 ms.
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different times of flight (TOFs) after release, beginning with
Fig. 1(a) showing the moment of release. The condensate has
been stirred so that it is released having one unit of angular
momentum. We note that there is good agreement with quanti-
tative differences occurring in the heights of individual peaks
and in the position of the peaks at later times. The comparisons
are typical of a variational solution in that they are the “best
fit” to the exact solution for the given trial wave function.

A comparison of the GPE and LVM results for a ring BEC
directly released from the trap and allowed to expand for a
fixed TOF for different initial angular momenta is exhibited in
Fig. 2. The figure displays comparisons for m values ranging
from O to 5. Again the agreement is good although there are
some quantitative differences as to positions of the individual
peaks. Itis clear that there is qualitative and almost quantitative
agreement between the 3D TDGPE and the HLVM equations
of motion for these cases.

We next compare the results of the TDGPE and HLVM for
ring-BEC evolution while the LG potential is ramped down
from its initial value. This differs from the previous comparison
in that the confining light-sheet potential remains unchanged
during the rampdown. In the simulated rampdown process the
number of condensate atoms was N = 500000 atoms. The
LG potential depth was ramped linearly down from its initial
value of Vi g = 227 nK (the same as previously) to 20% of this
value over a time span of 50 ms. The light-sheet potential was
the same as in the direct-release simulations. A phase imprint
was applied to the condensate to simulate one unit of angular
momentum added by stirring.

Figure 3 shows the comparison starting at + = 0 ms and for
every 10 ms thereafter until the rampdown is complete. The
two solutions again exhibit the type of agreement that is usual
for variational approximations in that the variational solution
is a “best fit” to the numerical solution. With that caveat, the
agreement here is quite good during the entire ramp down.

IV. SUMMARY

In this paper we derived equations of motion whose solution
approximates the solution of the 3D TDGPE applied to
a quasi-2D Bose-Einstein condensate. The equations were
derived using a hybrid Lagrangian variational method. Similar
equations of motion were derived earlier [18] for quasi-1D
BEC systems. The main advantage of solving these equations
is that numerical solution of the HLVM equation can be
performed 100 to 1000 times faster than solving the 3D
TDGPE. In the comparison simulation presented in Sec. III,
solving the real-time 3D TDGPE required more than 24 h of
CPU time while solving the HLVM equation took about 10 min
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on a commodity desktop PC. The resulting speedup here is by
roughly a factor of 150.

This advantage enables rapid simulation of many different
possible quasi-2D systems. It should be noted that when the
HLVM was applied to a quasi-1D system describing soliton
splitting in optical fibers [23], it was found that occasionally
the HLVM equations of motion did not provide any advantage
over the regular LVM technique. In the work cited, the authors
recommended that any important results that come out of
HLVM simulations be confirmed by simulations using the full
equations. We did not find any case where the HLVM equations
predicted behavior that was qualitatively different from that of
the 3D TDGPE. However, we agree with the recommendation
of the authors of Ref. [23].

Given the comment above, it is important to include a short
discussion of the region of validity of the method here. The
main advantage of the use of this method is that a region
of parameter space can be explored either much more quickly
than with the 3D TDGPE or even for cases where using the full
equation is not feasible. The most important assumption is that
the trial wave function is a product of a function of horizontal
(radial) coordinates x and y and a function of the vertical
coordinate,z. The usual criterion for this to be valid occurs
when the frequency of the vertical harmonic potential is large
compared to the frequency of the radial potential. However,
in the comparisons shown in Sec. III, the vertical potential
frequency (w, = 320 Hz) was less than three times larger than
the radial frequency (w, = 120 Hz) and yet the method still
gave good results. While we have not studied the validity of
the method in detail (hence our agreement with the comment
in Ref. [23]) there are perturbation methods described in the
literature [24] that enable the region of validity to be more
precisely determined.

This caveat notwithstanding, the HLVM equations derived
in this paper enable rapid study of different systems of current
experimental interest. In particular, they should be useful in
simulating time-dependent behavior of quasi-2D atomtronic
systems where mean-field theory applies. We expect this
approximation to become a useful tool in studying future
quasi-2D Bose-Einstein condensate systems.
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