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Abstract—Due to demanding service levels in E-commerce or-
der fulfillment, modeling and analysis of order picking processes
in warehouses deserve special attention. With a particular focus
on multi-line E-commerce orders, we develop modeling tools
that are necessary to analyze the order consolidation delays in
the downstream pick stations. We develop a queuing network
modeling framework for integrated analysis of upstream (storage
system) and downstream (pick system). We apply our modeling
approach to an integrated order-pick system that includes a
shuttle-based storage and retrieval system, and a single pick
station. Using simulations, we test the effect of the storage system
configuration on the order throughput time.

Index Terms—E-commerce, order picking, multi-line orders,
queuing

I. INTRODUCTION AND BACKGROUND

E-commerce order fulfillment has always been challenging
due to large SKU counts with a very long and slow-moving
tail demand distribution, high demand variability (in particular
extreme peak season volumes), and high penalty for poor
delivery performance, potentially resulting in the brand dam-
age. To address these challenges, innovative material handling
solutions such as shuttle-based storage and retrieval systems
and mobile fulfillment systems (developed by Kiva Systems,
now part of Amazon Robotics) have been developed (see [11]
for an overview of automated and robotized material handling
solutions).

Warehouses must be able to provide fast unit-load op-
erations and handle order fulfillment operations in an ef-
ficient, responsive, and flexible manner. Automated storage
and order pick system technologies can aid to manage the
picking process. In an automated E-commerce warehouse,
pallets unloaded from incoming trucks are stored in reserve
storage and pallets pick area. The storage system could be
an Automated Storage and Retrieval System (AS/RS). These
pallets are destacked and stored in the item tote storage area
for order picking. When a customer orders a particular item,
the corresponding item tote is retrieved and dispatched to the
order pick station in a particular sequence. Finally, the items
are picked from the totes at the pick stations (that are arranged
in parallel or in series), packed, and shipped. There are several
studies on analyzing the performance of automated pallet or
tote storage systems, on developing system-specific designs,
and on obtaining operational insights (e.g. [1]; [3]; [5]).

Several analytical models have been built for analyzing the
performance of the upstream storage systems with shuttle-
based storage and retrieval system (SBS/RS). For example,
Malmborg [8] propose an analytical model to estimate the
performance of SBS/R system as a function of the system
characteristics such as storage space configuration, number of
vehicles, and storage capacity. Fukunari and Malmborg [9] use
a network queuing approach for estimating the performance
measures of SBS/R system using opportunistic interleaving.
Roy et al. [1] develop a queuing network model of a single-
tier vehicle-based storage and retrieval system, and analyzed
the effect of design choices such as tier depth-to-width ratio
on throughput time performance. Roy et al. [13] also expand
the model to incorporate blocking effects on the throughput
time performance in a single tier. Several other studies have
been performed on analyzing the performance of tier-captive
systems with multiple-tiers (for example, see [12] and [13]).
Ekren et al. [10] model the SBS/R system as a single-class,
multiple server semi-open queuing network (SOQN) and solve
it using matrix-geometric method (MGM) to estimate the
performance measure. However, these studies only analyze the
performance of isolated storage systems, without considering
any interaction effects between the storage and the downstream
pick station. The focus of this research is on the performance
analysis of integrated tote storage and order-pick system (see
Figure 1).

Fig. 1. Scope of this research (adapted from Tompkins et al. [2])

In goods-to-man warehouses, automated storage and re-
trieval systems (upstream) work together with semi-automated
pick workstations (downstream). Upon order arrival, these



automated storage systems fetch the totes and dispatch them to
the pick modules via conveyors. There are several choices of
upstream storage technologies such as crane-based or shuttle-
based storage and retrieval systems. The impact of the system
type on downstream order picking performance is largely
unknown. Using a queuing network model, Tappia et al.
[6] study the effect of storage system technology on order
throughput times, and the effect of the picking station input
buffer size on order picking performance. Their results indicate
that using a shuttle-based technology instead of a crane-based
storage systems yields investment cost savings (i.e., fewer
aisles in the storage area and fewer picking stations), paired
with a lower total throughput time at a given order arrival rate.
However, their model assumes that all orders are single-line
orders i.e., orders require only one item tote to be fulfilled.
On the other hand, a multi-line order requires more than one
item totes to complete an order.

Traditionally, E-commerce order pick systems were de-
signed for handling single-line orders. However, E-commerce
warehouses are witnessing a steady rise in the volume of multi-
line orders. To provide free shipping, E-commerce providers
are enforcing a minimum value on the orders. To avail free
shipping, customers are now placing bundled orders. It is not
clear if the system design parameter settings for a single line
order are still optimal for a multi-line order. Further, it is not
evident, if the optimal technology choice for storage system
with single-line orders remains the same when the system
operates with multi-line orders.

Using queuing network models, we analyze the design
choices for integrated order pick systems. We develop an
analytical framework to model integrated tote storage and
order picking. The downstream order consolidation stations are
modeled as synchronization queues. The remote Order Picking
System (OPS) is modeled as a semi-open queuing network
(SOQN). This queuing network captures the order waiting
time at the external buffer and also allows to investigate the
effect of the traffic intensity at the whole OPS system. While
we consider shuttle-based storage and retrieval systems, our
model can be adapted for analysis of other storage system
technologies such as AS/RS.

The rest of the paper is organized as follows. In Section
II, we discuss the system description and the modeling as-
sumptions. We include the model notations and describe the
model in Section III. We discuss the numerical experiments in
Section IV and provide the concluding remarks in Section V.

II. SYSTEM DESCRIPTION AND MODELING ASSUMPTIONS

Figure 2 illustrates the full view of the remote order picking
system. It consists of three major components: Shuttle-based
storage and retrieval system (SBS/R), workstation for the
human operator for order picking, and a closed loop conveyor
connecting the storage and retrieval system to the order pick
station. The storage and retrieval system composed of multiple
aisles where each aisle consists of multiple tiers and each tier
has multiple columns for storage. Figure 3 provides a closer
look at a typical aisle which has one shuttle for every tier.

Fig. 2. Overall system view with storage and picking (Source: KNAPP
Logistics Automation, Inc.)

Fig. 3. Closer view of an aisle with shuttles (Source: Vanderlande industries)

There are two major blocks of this integrated system - Up-
stream System and Downstream System. An upstream system
performs the fetching of item totes from storage locations
and then transfers them to the downstream order picking
system (OPS), a pick station. We illustrate the model for a
single choice of the upstream system - a tier-captive SBS/R
system. Once the item tote reaches the OPS, the following
pick activities are performed: item picking from item totes,
consolidating the multi-line items for an order, and then



dispatching the completed orders to the packaging station.
Note that the proposed modeling framework can be deployed
for other types of storage system as well.

To model the integrated system, we include the following
assumptions:

• The item totes are stored and fetched in the high-bay
storage locations in (from) a random location.

• Each item tote holds a sufficient number of units for each
item.

• The processing of jobs at shuttles, lifts, and pick station
resources is carried out on a First Come First Serve
(FCFS) basis.

• The order arrival process is Poisson.
• All incoming orders are of multi-line category and they

require exactly two item totes to be fulfilled. Note that
we assume two items per order only for the ease of
illustration.

• An order is characterized by its Order Profile which
contains the information about the item totes required
by the order and how many units of an item should be
picked from the corresponding item tote.

• There is only one order picking station (OPS) in the
downstream network.

• The conveyor takes a deterministic time for transferring
an item tote from entrance node to the picking station.

• The processing time at an entrance node to conveyor
system and at the picking station follows an exponential
distribution.

III. MODEL DESCRIPTION

We adopt the notations used by Tappia et al. [6]. K, Ku,
and Kd denote the maximum number of customer orders in
the integrated system, maximum number of customer orders
in the upstream system, and maximum number of customer
orders in the downstream system, respectively. The term λ,
denotes the order arrival rate to the system. The terms Na,
Nt, and Nc denote the number of aisles, tiers, and columns in
the upstream system, respectively, while the term Np denotes
the number of picking stations in the downstream system.
In the upstream system, µ−1

S , σ2
S and µ−1

L , σ2
L correspond to

the mean and variance of the service times for the shuttles
and lift, respectively. FTL and FTS denote the fixed time
required for loading/unloading the item tote to/from the lift
and shuttle, respectively. Also, the notations vL, aL, vS , aS
denote the velocity and acceleration/deceleration rates of lift
and shuttle, respectively. On the other hand, locw and loch
denote the unit width clearance and unit height clearance per
storage location. In the downstream system, µ−1

ent, tconv , and
µ−1
pick denote the mean service time at the entrance node for

conveyor, the mean service time of the conveyor, and the mean
service time at the pick station, respectively.

We permit a maximum of K order tokens in the system.
If there are already K orders flowing in the system, then the
customer orders (on arrival) queue at Buffer B1. If a token
is available, the order on arrival is matched with an order
token available in B2 and they visit first the upstream system.

The item totes corresponding to an order is fetched from the
upstream system. After fetching the item tote, the item tote
is transferred along with the token to the downstream pick
station. Once the item picks corresponding to all line items for
an order is complete, the token is released to Buffer B2 and
is available to process another transaction. The consolidated
order is released for packaging. Note that we consider a dual-
command cycle in the upstream station i.e., the returning item
tote (after picking) is first stored at an open location present
in the destination tier and aisle before fetching the item tote
for another order. This network is a special class of queuing
network known as a semi-open queuing network (see Figure
4). The network can be viewed as an open network with
respect to the external arrival of the customer orders and the
network can also be viewed as a closed network because the
population of customers in the system is constant, K order
tokens.

Upstream

System
Fetching item totes

from storage locations

and transferring them

to OPS

Downstream

System
Order picking from

item totes at OPS

J

K

External

Arrival of

Customer

Orders

Completed Orders

B1

B2

Fig. 4. Integrated queuing network model (adapted from Tappia et al. [6])

In the integrated system, modeling the upstream network
can be quite complex depending on the type and number of
resources and routing of tokens in the network. Likewise, mod-
eling the downstream network can be quite complex depending
on the configuration of the pick stations (series, parallel, or a
combination). To analyze the integrated system, we adopt an
aggregation approach. We first develop two detailed closed
queuing network models of the upstream and the downstream
system, respectively. We then obtain the throughput of the
closed queuing networks for varying population using approxi-
mate mean value analysis algorithm. Using network reduction
techniques, we substitute the upstream and the downstream
system with two load-dependent queues operating in tandem.
We now discuss the queuing network models corresponding
to the upstream and the downstream system in the following
subsections.

A. Upstream System with SBS/R Technology

We consider SBS/R technology choice for the storage sys-
tem in the upstream network. It is modeled as a closed queuing
model with a single customer class (Figure 5). There are Na

aisles where each aisle has Nt tiers. Each tier is equipped
with a dedicated shuttle while each aisle has a dedicated lift
for storage and retrieval of item totes. All shuttles and lift
resources are modeled as single server stations with generally
distributed service time. In case of a retrieval transaction, the
item tote is fetched from the tier of a particular aisle using
the corresponding shuttle. Then, through the lift corresponding
to that aisle, it is brought to the entrance of the conveyor,
which can dispatch only one item tote at a time to the



conveyor. The entrance node of the conveyor is modeled as
a single server station with exponentially distributed service
time. As the distance to be traveled from the entrance point
of the conveyor to the pick station is known and fixed, it
will take a deterministic time for the item tote to travel to
the pick station on the conveyor. Hence, the travel time on
the conveyor is modeled using an Infinite Server (IS) node
with deterministic service times. Therefore, the total number
of nodes in an upstream stream with SBS/R technology is
equal to NaNt+Na+2. There are a maximum of Ku orders
allowed in the upstream system. As we already assume that
there will be exactly two items required by all orders, so a
maximum of 2Ku item tokens are allowed in the upstream
system corresponding to the Ku orders.

µ
−1

s

µ
−1

s

µ
−1

s

µ
−1

l

µ
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s

µ
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s

µ
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µ
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µ
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µ
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2 ∗Ku item tokens correspoding to Ku orders

Tier 1

Tier 2

Tier Nt

Tier 1

Tier 2

Tier Nt

Tier 1

Tier 2

Tier Nt

µ
−1

ent tconv

Fig. 5. Upstream network with SBS/R for dense tote storage and retrieval
(adapted from Tappia et al. [6])

We assume that the lift dwells at the LU point of first
tier after completion of every storage/retrieval transaction.
Likewise, the shuttle dwells at the LU point of its tier. Now,
the service time parameters (mean and standard deviation) for
the lift and the shuttle can be calculated using the following
equations provided by Marchet et. al. [15]. Here, DL(t) and
DS(c) represent the distance traveled by the lift and the shuttle
for performing a storage/retrieval transaction involving tier t
and column c, respectively. For further details on the service
time expressions, see [15].

DL(t) = (t− 1) ∗ loch
µ−1
L (t) =
2 ∗ [2.vL/aL + (DL(t)− 2.v2L/(2.aL))/vL] + 2.FTL,

for DL(t) > v2L/aL , and
2 ∗ [2 ∗

√
DL(t)/aL] + 2.FTL,

for DL(t) < v2L/aL

µ−1
L =

1

Nt
∗

Nt∑
t=1

µ−1
L (t) (1)

σ2
L =

1

Nt − 1
∗

Nt∑
t=1

[µ−1
L (t)− µ−1

L ]2 (2)

DS(c) = c ∗ locw
µ−1
S (c) =
2 ∗ [2.vS/aS + (DS(c)− 2.v2S/(2.aS))/vS ] + 2.FTS ,

for DS(c) > v2S/aS , and
2 ∗ [2 ∗

√
DS(c)/aS ] + 2.FTS ,

for DS(c) < v2S/aS

µ−1
S =

1

Nc
∗

Nc∑
c=1

µ−1
S (c) (3)

σ2
S =

1

Nc − 1
∗

Nc∑
c=1

[µ−1
S (c)− µ−1

S ]2 (4)

B. Downstream System

The downstream system includes the pick station. There
are two operations included in the downstream system: 1)
Picking the item from the item tote and placing it into the
corresponding order tote, and 2) Waiting for the completion
of an order. There are a maximum of Kd orders allowed in
the downstream system. As we assume that each order requires
exactly two item totes to be fulfilled, there can be a maximum
of 2Kd item tokens in the system corresponding to those Kd

orders. To incorporate the human picker operation, there is
a node with exponentially distributed service time in Figure
6. The synchronization station M models the waiting time to
consolidate all items and complete an order.

µ
−1

pick

MItem i

Item j

2 ∗Kd item tokens corresponding to Kd orders

Fig. 6. Downstream network for order picking
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Fig. 7. Reduced semi-open queuing network for the integrated system

Figure 7 depicts the solution approach for the integrated
model. It is a single class semi-open queuing network with
maximum K number of orders allowed in the system. Station
A is an equivalent load-dependent server corresponding to
the upstream system, while station B is an equivalent load-
dependent server for the downstream system. Here, K∗

u and
K∗

d are the maximum number of orders allowed in the
upstream and downstream system, respectively such that the
corresponding throughput estimates in the respective systems
are at a maximum level.

IV. SIMULATION MODEL AND RESULTS

We consider a 10-tier high and a 100 columns deep, shuttle-
based storage and retrieval system. We also vary the number
of aisles in the system from 1 to 3. We analyze the system
with different levels of transaction order arrival rates. We
develop a discrete-event simulation model of the integrated
queuing network model discussed in Section III using Arena
Simulation software. We use 15 replications to obtain a 95%
CI. The parameter settings for the design of experiments is
included in Tables I and II. We vary the order arrival rate and
observe the change in the order throughput time. For this set
of experiments, we assumed an infinite input buffer space at
the order picking station (OPS) in the downstream system. As
expected, we observe that the average order throughput time
increases with increase in the arrival rate (Figure 8). Also, we
observe that the throughput time decreases with an increase in
the number of aisles (Figure 9).

Parameter Value
Number of replication 15

Warm-up period 25000 sec
Replication length 1250000 sec

locw 0.5 m
loch 0.6 m
FTL 3.7 sec
FTS 13 sec
vL,aL 3 m/s, 4 m/s2

vS ,aS 3 m/s, 1 m/s2
Nt 10
Nc 100
Np 1
K 28

µ−1
pick 16.7 sec
tconv 30 sec
µ−1
ent 5 sec

TABLE I
PARAMETER SETTING

Scenario Na λ (per hour)
1 1 50
2 1 60
3 1 70
4 1 80
5 1 90
6 1 100
7 1 105
8 2 50
9 2 60
10 2 70
11 2 80
12 2 90
13 2 100
14 2 105
15 3 50
16 3 60
17 3 70
18 3 80
19 3 90
20 3 100
21 3 105

TABLE II
DESIGN OF EXPERIMENTS - I

Fig. 8. Effect of the order arrival rate on throughput time of the system with
infinite input buffer at the OPS

Fig. 9. Effect of the number of aisles on throughput time of the system with
infinite input buffer at the OPS

We also explored the effect of input buffer size at OPS, on
the throughput time. The parameter setting is retained from
Table I; while the design of experiments is included in Table
III. We observe that the average throughput time decreases
with increase in the input buffer size at OPS (Figure 10).



Scenario Na Input buffer size at OPS
1 1 1
2 1 2
3 1 3
4 1 4
5 1 5
6 1 6
7 1 7
8 1 8
9 2 1

10 2 2
11 2 3
12 2 4
13 2 5
14 2 6
15 2 7
16 2 8
17 3 1
18 3 2
19 3 3
20 3 4
21 3 5
22 3 6
23 3 7
24 3 8

TABLE III
DESIGN OF EXPERIMENTS - II

Fig. 10. Effect of the input buffer size at OPS on throughput time of the
system with λ = 100 orders/hour

V. CONCLUSIONS AND FUTURE WORK

In this research, we develop a queuing network model
for performance analysis of integrated order pick stations
handling multi-line order fulfillment. We apply the model for
a storage system operated using shuttle-based storage and
retrieval system and a pick station. We evaluate the model
using discrete-event simulations and show the effect of order
throughput and a number of storage aisles on average order
throughput time. We plan to evaluate the model using a
combination of analytical and simulation methods. We also
intend to apply the framework for a wider selection of storage
system technology choices such as AS/RS.
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