Shuttle-Based Storage and Retrieval Systems with Robotic Order-Picking Shuttle Carrier

Tone Lerher, Ph.D
University of Maribor, Slovenia

12

Motivation

Throughput performance

Method

Results

Conclusions

Robotic Order-Picking Shuttle Carrier

SBRS/RS with robotic order-picking shuttle carrier differs from the classical SBRS/RS. In this system the shuttle carrier is order picking (collecting) the items in the 7th tier of the storage rack by utilizing the robotic arm.

The complete working cycle would look as follows:

- The elevator’s lifting table starts from the ground-floor, i.e., the first tier.
- The elevator’s lifting table picks up the (empty) tote and moves to the 7th tier. When the elevator’s lifting table reaches the 7th tier, it releases the tote in the buffer position.
- The shuttle carrier in the 7th tier picks up the tote from the buffer position and starts picking the items. When the order is finished, the shuttle carrier travels to the buffer position of the 7th tier.
- The elevator’s lifting table moves to the the 7th tier and picks up the tote from the buffer position.
- The elevator’s lifting table moves to the ground-floor (first tier), where the tote is released.

Note that the elevator is excluded from this study. Operations regarding the storage of full totes and retrieval of empty totes with the shuttle carrier is not noted studied in this research, as well.

The assumptions that were used in analytical modelling are summarized as follows:

- The storage rack is divided into two sides (left and right), therefore totes with items are available on both side of the storage rack.
- The robotic order-picking shuttle carrier is operated on a multi command cycle collecting four (4) and six (6) items on four (4) and six (6) randomly selected locations.
- The sequences of (i) Acceleration, constant velocity and deceleration has been used.
- A randomized assignment policy is considered which means that any order-picking location is equally likely to be selected for picking the items with the robotic order-picking shuttle carrier.

The expected one way travel time (\(tt\)) for travelling of the robotic order-picking shuttle carrier is equal to the next expression:

\[
E(t_{\text{TT}}) = \frac{1}{2}t_{\text{TT}} + \frac{1}{2}d_{\text{TT}}v_{\text{TT}} + \frac{1}{2}d_{\text{TT}}a_{\text{TT}}
\]

The expected travel-time between time (\(E(t_{\text{TT}})\)) for travelling of the robotic order-picking shuttle carrier between two randomly selected order-picking locations is equal to the following expression:

\[
E(t_{\text{TT}}) = \frac{1}{2}t_{\text{TT}} + \frac{1}{2}d_{\text{TT}}v_{\text{TT}} + \frac{1}{2}d_{\text{TT}}a_{\text{TT}}
\]

In this study totes with the following dimensions: length \(l_{\text{m}} = 0.6\ m\), width \(w_{\text{m}} = 0.4\ m\) and height \(h_{\text{m}} = 0.24\ m\) have been used. With regard to the tote, the order-picking location has the following dimensions: length (depth) of the column \(l_{\text{c}} = 0.6\ m\), width of the column \(w_{\text{c}} = 0.5\ m\) and height of one column (tier) \(h_{\text{c}} = 0.5\ m\).

For the calculation of the throughput performance of the robotic order-picking shuttle carrier, the following lengths \(l_{1} = 50\ m, l_{2} = 40\ m, l_{3} = 50\ m, l_{4} = 60\ m, l_{5} = 70\ m, l_{6} = 80\ m, l_{7} = 90\ m, l_{8} = 100\ m, l_{9} = 110\ m, l_{10} = 120\ m\) of the storage rack were used.

Since the throughput performance depends on the velocity characteristics of the robotic order-picking shuttle carrier, the following velocity profiles were used in this study: \(v_{\text{SP}} = 2\ m/s\) and \(a_{\text{SP}} = 1\ m/s^{2}\);

\(v_{\text{AP}} = 3\ m/s\) and \(a_{\text{AP}} = 2\ m/s^{2}\) and \(v_{\text{AP}} = 4\ m/s\) and \(a_{\text{AP}} = 3\ m/s^{2}\).

Constant times were used as follows: \(t_{\text{S}} = 3\ \text{sec}\), \(t_{\text{p}} = 8\ \text{sec}\), \(t_{\text{c}} = 5\ \text{sec}\).

The proposed model allows the calculation of the expected cycle time for multiple command cycles, from which the performance of the robotic order-picking shuttle carrier can be evaluated. Various parameters were examined such as: Velocity (\(v_{\text{SP}}\)), acceleration / deceleration (\(a_{\text{SP}}\)) length (\(l_{\text{c}}\)) of the storage rack.

The proposed analytical model demonstrated good performances and satisfactory deviations and could be a very helpful tool for designing automated order-picking systems with robotic order-picking shuttle carriers. It could be of considerable help to professionals in practice, when making decisions in the early stages of design project and when deciding which type of the storage rack configuration or robotic order-picking shuttle carriers will be most promising.

This research work was supported by Slovenian Research Agency ARRS [Methodology for Building an Integral Model of Transport-Warehouse Processes to Enhance Intralogistics System Efficiency; grant number: LS-8237].

2018 International Material Handling Research Colloquium
Savannah, Georgia USA, July 23-26, 2018