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Abstract—Robotic bin-picking is increasingly important in the 

order-picking process in intralogistics. However, many aspects of the 

robotic bin-picking process (object detection, grasping, 

manipulation) still require the research community's attention. 

Established methods are used to test robotic grippers, enabling 

comparability of the research community's results. This study 

presents a modified YCB Robotic Gripper Assessment Protocol that 

was used to evaluate the performance of four robotic grippers (two-

fingered, vacuum, gecko, and soft gripper). During the testing, 45 

objects from the modified YCB Object and Model Set from the 

packaging categories, tools, small objects, spherical objects, and 

deformable objects were grasped and manipulated. The results of the 

robotic gripper evaluation show that while some robotic grippers 

performed substantially well, there is an expressive grasp success 

variation over diverse objects. The results indicate that selecting the 

object grasp point next to selecting the most suitable robotic gripper 

is critical in successful object grasping. Therefore, we propose grasp 

point determination using mechanical software simulation with a 

model of a two-fingered gripper in an ADAMS/MATLAB co-

simulation. Performing software simulations for this task can save 

time and give comparable results to real-world experiments. 

Keywords—intralogistics, robotic bin-picking, YCB protocol, 

robotic gripper evaluation, mechanical software simulations, 

performance analysis. 

I. INTRODUCTION 

Today's challenges of skilled labor shortages and unstable 
economic and environmental conditions require profound 
changes in production and warehousing processes. In 
connection with increasingly demanding customer needs 
associated with small order sizes, an extensive product range, 
short delivery times, and variable order quantities, warehouses 
face major challenges [1]. 

Satisfying these needs usually requires redesigning and 
optimizing existing processes or introducing new technologies, 
such as robotization and automation. One of the most important 
and cost-intensive processes in warehouses is the order-picking 
of individual items according to the order list. 

The order-picking process is usually only partially 
automated, although most work is repetitive. This is due to the 
large assortment of items (various dimensions, shapes, weights, 
etc.), which can pose a problem for the robot order-picking, 
which in many ways cannot yet surpass human speed and 
dexterity [2]. However, with the development of collaborative 
robotics, advanced robotic grippers, 3D image processing 
systems, and deep-learning algorithms, new order-picking 
opportunities are emerging [3] that bridge the gap between 
human and robotic order-picking capabilities.  

Many researchers are currently engaged in the research area 
of robotic bin-picking, focusing on the development of new 
object recognition and grasping algorithms [4, 5], the 
positioning and orientation of objects within SKUs [6], optimal 
object grasping algorithms [7], and the use of different robotic 
gripping devices [8].  

Selection of the proper components for the optimal robot 
order-picking, such as a 3D vision system and robotic gripper, 
is a complex task. It requires a substantial amount of 
experimental work to be done before the actual bin-picking 
application. On the other hand, it provides benefits in terms of a 
fully automatic process, which can achieve higher overall 
picking performance compared to the human order picker. 

Therefore, the researchers are working on providing 
different benchmarks and organizing challenges [9] to enable a 
fair comparison between different robotic workstations, 
including a robotic arm, 3D vision systems, and robotic grippers 
[9-11]. Furthermore, the precision of the 3D vision system 
combined with the appropriate robotic gripper plays an 
important role in the overall efficiency of robotic bin-picking. 

With our research work, we aim to evaluate the importance 
of selecting the optimal robotic grippers, which can improve the 
bin-picking process related to the operational efficiency in 
warehousing. 



 
The research questions used in our analysis are as follows: 

− Can the selected robotic gripper be used effectively for 
a single group of objects? 

− Is there a procedure in the research community to 
analyze the suitability of the robotic gripper? 

− Can we contribute to the faster development of robotic 
bin-picking using the proper procedure? 

− Can mechanical software simulations predict the most 
suitable robotic gripper and grasp points? 

To answer the above research questions, a comparative 
analysis of individual robotic grippers for different types of 
picking objects was developed. In addition to the results, the 
cases in which an objects cannot be grasped are analyzed in 
detail. 

II. A BRIEF LITERATURE OVERVIEW 

Research groups working on robotic grippers are proposing 
methods that allow objective and reproducible testing of 
different robotic grippers. Well-defined test conditions and well-
defined robotic gripper evaluation procedures ensure 
impartiality and reproducibility. The purpose of using these 
methods is to make the results generated by the broader research 
community comparable, which allows researchers to progress 
faster [10, 12-14]. 

Calli, et al. [10] propose five methods or protocols for testing 
robotic manipulation systems within their YCB Object and 
Model Set. From the point of view of testing robotic grippers, 
the Gripper Assessment Protocol, the Table Setting Protocol, the 
Block Pick and Place Protocol, and the Box and Blocks Test are 
particularly interesting. The Gripper Assessment Protocol is 
presented in more detail in Chapter III.  

Falco, et al. [13] propose several methods to test the 
elementary properties and capabilities of robotic finger grippers, 
such as grip force, finger force, slip resistance, touch sensing 
capability, grip force sensing capability, grip force control 
capability, etc. In contrast to the protocols proposed by Calli, et 
al. [10], which are based on manipulation tasks, the methods 
proposed by Falco, et al. [13] are based on force measurements. 
This approach is welcome from the point of view of the 
reproducibility of testing. The measurements are made using 
external data acquisition systems independent of the system 
under study. No other objects are used in the tests, thus 
eliminating an important source of potential variation in the test 
conditions. The exception is a so-called artifact that allows the 
measurement of gripping force and slip resistance. All 
researchers have access to the same artifact at the expense of 
using standard and 3D-printed components.  

The Amazon Picking Challenge [4, 15] was a major 
competition in robot manipulation. The competition aimed to 
accelerate the development of robotic systems for warehouse 
automation. A key challenge in warehouse automation is picking 
objects from storage racks. The pick-up operation is also 
recognized as one of the logistical bottlenecks [12]. The 
benchmark for robotic systems is the performance of the people 
currently operating. Human operators take between 5 and 10 

seconds to pick up an object, which is a challenge for robotic 
systems [4]. For the Amazon Picking Challenge, participants 
had to develop an autonomous robotic system that can pick as 
many objects as possible from a warehouse system in a limited 
time. A set of 25 objects from the Amazon Web shop is used, 
which are challenging to perceive and grasp due to their 
properties (shape, deformability, transparency, etc.).  

Robotic manipulation is also a topic in the IROS Robotic 
Grasping and Manipulation Competition [16, 17]. The 
competition is divided into three sections. The first section deals 
separately with robotic grippers, an important subsystem of 
robotic manipulation systems. Different treatment from other 
subsystems, such as the manipulator and algorithms for path 
planning, grasp planning, perception, decision making, etc., is 
achieved by manual gripper control, where the operator holds 
and operates the robotic gripper. The operator must perform 
pick-and-place operations and ten predefined handling tasks. 
Using a sequence of pick-and-place operations, the operator 
must stack ten objects from a shopping bag. The objects used in 
the competition are from the YCB object and model set and from 
the Amazon Picking Challenge. The second part of the 
competition deals with complete robotic manipulation systems 
developed by the participants. Robotic manipulation systems 
must autonomously perform the same tasks as the operator in the 
first part of the competition. The third part of the competition is 
dedicated to simulations of manipulation tasks. 

As seen from the brief literature overview, the robotic 
community is finding ways to compare various robotic gripper's 
performance efficiently. The key impact of testing protocols and 
benchmarks is to ensure repeatability and ease of use.  

III. YALE-CMU-BERKELEY (YCB) OBJECT AND MODEL SET 

FOR BENCHMARKING ROBOTIC GRIPPERS 

This research study aims to evaluate the capabilities of 
selected robotic grippers. Our previous analysis shows that 
choosing the right robotic gripper for the selected items has a 
decisive influence on the bin-picking performance. Namely, not 
all items can be picked with a single robotic gripper.  

When developing the method for testing the robotic grippers, 
our starting point was the YCB Object and Model Set [10]. YCB 
Object and Model Set and various protocols were proposed by 
Yale, Carnegie Mellon, and Berkeley Universities researchers. 
The YCB Object and Model Set aims to increase the 
comparability of results from studies carried out in robotic 
manipulation. The authors aim to provide researchers with a 
range of objects and models that is broad, accessible, robust, and 
affordable. The set consists of 86 objects, their digital models, a 
database of physical properties of the objects, and a collection 
of protocols representing possible uses of the set. The YCB 
Object and Model Set authors divide the objects into five 
categories, depending on the area or purpose of use: a) Food 
items: food in boxes (pudding, crisps), tins (coffee, tuna) and 
bottles (mayonnaise), and plastic fruit; b) kitchen items: objects 
used for cleaning (cleaning products, cleaning sponges) and 
preparing (dishes, scoops) and serving food (plates, cutlery);  
c) tool items: various tools (screwdrivers, clamps, hammer, 
drill) and objects used with the tools (screw, nut, nails, wooden 
block); d) shape items: objects of specific shapes (balls, 
marbles) and sizes (washers, credit cards) and deformable 



objects (rope, plastic chain); e) task items: objects used to carry 
out tasks (wooden blocks, LEGO bricks, Rubik's cube, T-shirt, 
magazine). 

The YCB Gripper Assessment Protocol predicts using 28 
objects from the standard 86 items, divided into the following 
categories: a) Round objects: balls (soccer, softball, tennis, 
racquetball, golf) and marbles (4 dimensions); b) flat objects: 
washers (7 dimensions) and credit card; c) tools: felt-tip pen, 
scissors, screwdriver, drill, hammer, and clamps (4 dimensions); 
d) hinged objects: rope and chain. 

We have prepared a new division of objects from YCB 
object set, based on the characteristics of objects that affect their 
manipulation, such as shape, size, stiffness, etc: (1) Packaging: 
boxes, cans and bottles, and wooden logs and sponges for 
cleaning. These objects are characterized by simple shapes in 
which no dimension stands out and even mass distribution;  
(2) Fruit: plastic fruit characterized by various specific shapes; 
(3) Tools: workshop, office, and kitchen tools. These objects are 
characterized by complex shapes, in which one dimension often 
stands out, and uneven mass distribution; (4) Spherical objects: 
spheres of different diameters, stiffness, and surface structures. 
A common specific shape characterizes these objects;  
(5) Cutlery: flat and shell-shaped objects with openings and 
handles; (6) Small objects: objects of simple shapes, at least one 
dimension of which is distinctly small; (7) Deformable objects: 
objects whose shape changes under the influence of forces 
during their manipulation; (8) Objects intended for the 
performance of tasks. 

Purchasing the original objects from the YCB Object Set 
from the US was associated with long delivery times and 
relatively high shipping costs. Therefore, we have created our 
object set using the best available substitutes. The robotic 
grippers were tested according to the modified YCB Gripper 
Assessment Protocol. The protocol is intended to evaluate 
robotic grippers in terms of their ability to manipulate objects of 
various shapes and dimensions. The protocol enables the 
evaluation of robotic grippers that use different grasping 
principles. Several examples of the use of this protocol are 
described in [10, 18]. 

An expanded set of objects was used in evaluating the 
robotic grippers. Forty-five (45) objects from the previously 
introduced newly defined categories of the YCB set of objects 
and models were used (Fig. 1): packaging, tools, small objects, 
spherical objects, and deformable objects. The packaging 
category was selected because it contains objects relevant to 
logistics engineering. The categories of tools and small objects 
were selected because these objects are challenging from the 
point of view of grasping. The categories of spherical and 
deformable objects were selected to test all objects used in the 
original YCB Gripper Assessment Protocol Object Set. Not all 
objects from the listed categories were used in the testing of 
robotic grippers. Namely, a single object was used for multiple 
similar objects, as testing multiple similar objects would not 
provide additional information about the robotic grippers. 

 

Fig. 1. The proposed five categories of objects to be grasped from the original 

YCB Gripper Assessment Protocol. 

A. YCB Gripper Assessment Protocol 

Four different positions of the manipulated objects are used 
in the YCB protocol to evaluate the robustness of the robotic 
grippers. The locations are defined by the points  
SP1 (0, 0, 0), SP2 (10, 0, 0), SP3 (0, 10, 0), and SP4 (0, 0, -10), 
considering the coordinate system shown in Fig. 2. Each object 
is positioned in front of the robot so that its center of gravity 
coincides with each point and its main axis coincides with the 
X-axis. Exceptions are flat objects, where only three points are 
used (SP1, SP2, and SP3), and deformable objects, where no 
points are used, but these objects are positioned randomly in 
front of the robot. The coordinates units are in millimeters. 

 

Fig. 2. The location of four points SP1 (0, 0, 0), SP2 (10, 0, 0), SP3 (0, 10, 0), 

and SP4 (0, 0, -10) of the packed salt object and the coordinate system of the 

robot used in the experiments. 

For each object, the gripper's position is defined, which 
enables the object to be grasped, considering the position of the 
object defined by point SP1. This gripper position is also used 
for the other positions of the object defined by points SP2, SP3 
and SP4. The protocol does not define the exact orientation of 



objects. When testing the robotic grippers, the objects were 
positioned following the YCB protocol instructions. In addition, 
such orientations of the objects were used that allow the 
maximum success of grasping with a certain gripper. With such 
an approach, the influence of object orientation on the gripper 
score was reduced. Otherwise, a particular way of orienting the 
objects could deliberately or undeliberate affect the gripper 
score. 

The following testing procedure was used for objects from 
packaging, tools, small objects, and spherical objects. 

1. The object is placed in the starting position to coincide 
with point SP1. 

2. The robotic gripper's position, which enables the object to 
be grasped, is defined. 

3. The object is grasped. 

4. The object is raised and held in this position for 3 seconds. 

5. The object is rotated 90° in the X-axis direction and held 
in this position for 3 seconds. 

6. The object is rotated 90° in the Y-axis direction and held 
in this position for 3 seconds. 

7. The object is returned to its starting position. 

Steps 3 to 7 are repeated for the other starting positions of 
the object defined by points SP2, SP3 and SP4. If, in steps 3 to 6, 
the object's starting position defined by point SP1 leads to the 
object's falling, the testing with this object is completed. If the 
object falls during steps 3 to 6, at the starting positions of the 
object defined by points SP2, SP3 and SP4, the testing continues 
after step 7. 

The described testing procedure differs from the classic 
YCB Gripper Assessment Protocol proposed by the additional 
6th step, in which the manipulated object is rotated by 90° in the 
Y-axis direction. The testing steps are shown in Fig. 3. 

 

Fig. 3. The sequence of modified YCB Gripper Assessment protocol.  

The following testing procedure was used for objects from 
the deformable objects category, which is the same as the 
procedure proposed by the original YCB Gripper Assessment 
Protocol. 

1. An object is randomly placed in front of the robot. 

2. The robotic gripper's position is defined, which enables 
the object to be grasped. 

3. The object is grasped. 

4. The object is raised by 150 mm and held in this position 
for 3 seconds. 

5. The object is returned to its starting position. 

While maintaining the grip position defined in step 2, the 
grasping is repeated twenty times. 

Following the YCB Gripper Assessment Protocol, the 
robotic gripper's score was obtained based on grasping 
performance. The following evaluation procedure was used for 
objects from packaging, tools, small objects, and spherical 
objects. If the manipulated object is not released in the fourth 
step of testing and no free movement of the object inside the 
gripper is detected, two points are added to the robotic gripper. 
If the free movement of the manipulated object inside the robotic 
gripper is detected, one point is added to the robotic gripper. If 
the manipulated object is not released at the fifth or sixth step 
and the object's free movement inside the robotic gripper is not 
detected, two points are added to the robotic gripper. If the free 
movement of the manipulated object inside the robotic gripper 
is detected, one point is added. The described procedure is used 
for all starting positions of manipulated objects. 

In the case of objects from the deformable objects category, 
grasping in which no part of the object touches the ground after 
the fourth step of testing is considered successful. Half a point 
is added to the grasp for a successful grasp. 

B. Robotic bin-picker setup 

The YCB Gripper Assessment Protocol is hardware 

independent and can be performed on industrial and 

collaborative robots. For the test environment, we chose the 

collaborative robot UR5e with four robotic grippers:  

(1) Robotiq 2F-85 two-finger gripper (parallel configuration), 

(2) OnRobot Gecko SP3 single-pad adhesive gripper, (3) 

Robotiq EPick vacuum gripper with a suction cup of diameter 

d = 40 mm, and (4) Soft Robotics mGrip P2 soft gripper. 

IV. RESULTS 

The YCB robotic gripper assessment protocol test results are 
presented in the diagrams in Fig. 4 and Fig. 5. Fig. 4 shows the 
percentages of points achieved, illustrating the effectiveness of 
individual robotic grippers. The maximum grasping efficiency 
of 72% is achieved with the two-fingered gripper and 71% with 
soft gripper, respectively. The overall grasping efficiencies of 
the other two grippers, vacuum, and gecko gripper, are 
significantly lower and amount to 26% and 17%. Fig. 5 shows 
the percentages of points achieved by individual grippers by 
category of manipulated objects. 



 

Fig. 4. Overall robotic gripper efficiency for selected objects.  

 

Fig. 5. Grasping efficiency of the robotic gripper by categories. 

A. Robotic Gripper analysis 

The following sections discuss the results and analysis for all 
four robotic grippers. 

1) Two-fingered robotic gripper 
With the two-fingered robotic gripper, the maximum 

grasping efficiency of 94% is achieved in the packaging 
category. The robotic gripper had the most trouble with the 
cereals box in this category (Fig. 6a). During grasping, the box 
was deformed, which resulted in the formation of contact 
between the gripper and the box only at the edges of the box 
(Fig. 6a). As a result, the box moved freely in the grasp during 
manipulation. A similar case also occurred when manipulating 
a bottle of glass cleaner (Fig. 6b). In the case of larger objects 
from the packaging category, the problem of a limited stroke 
width of robotic gripper fingers was observed. For larger objects 
and larger displacements, the grasp would be less successful. 

  

Fig. 6. Grasping of cereals box (a) and glass cleaner (b) with the two-fingered 

gripper. 

A lower grasping efficiency can be seen in the tool (76%) 
and spherical objects (78%) categories. In the tool category, the 
grasp was less successful for lower objects (spoon, knife, 
scissors, etc.) and objects with an uneven mass distribution 
(hammer, drill). In the case of lower objects, the grasping was 
unsuccessful when the objects slipped in Z-axis direction, as the 
robotic gripper did not reach the objects, or the objects fell out 
of the grip due to insufficient contact surface (Fig. 7a). Objects 
with unevenly distributed mass (e.g., hammer) moved freely 
inside the gripper during manipulation (Fig. 7b). In the spherical 
objects category, the robotic gripper failed to grasp the soccer 
ball due to limited finger stroke width. The grasping of smaller 
marbles was also unsuccessful in case of deviations in the X-and 
Z-axis directions. 

  

Fig. 7. Grasping of (a) spoon and (b) hammer with the two-fingered robotic 

gripper.  

The two-fingered robotic gripper achieved 56% efficiency in 
the small objects category. Two-fingered gripper had problems 
with objects with a distinctly small height, such as credit cards 
and small washers. Grasping was unsuccessful due to the shape 
of the fingertips, as the rounded edges did not allow the 
formation of adequate contact between the robotic gripper and 
the objects. 

The deformable objects category achieved the lowest 
grasping efficiency of 23%. The robotic gripper could not 
successfully grasp the plastic chain and magazine in any of the 
20 trials. In the case of a plastic chain, a problem for grasping is 
the free movement of its joints, which causes the chain to slip 
out of the grip partially or completely. The magazine is 
problematic to grasp due to its dimensions. If the magazine is 
not deformed (bent, twisted), it is impossible to grasp it due to 
the insufficient stroke width of robotic gripper fingers. The small 
finger stroke width was also a problem when gripping the  
T–shirt, where a 35% grasp success rate was achieved. The 
highest success rate of 55% among deformable objects was 
achieved for the rope. 

2) Vacuum robotic gripper 
As with the two-fingered robotic gripper, the vacuum 

gripper has the highest grasping efficiency of 78% for objects in 
the packaging category. Grasping was unsuccessful for a can of 
tomatoes and a cleaning sponge. In both cases, it was not 
possible to ensure sealing between the vacuum suction cup and 
the object. In the first case due to the shape of the can (Fig. 8a), 
while in the case of the sponge due to the porosity of the surface. 

In other categories of objects, the efficiency of the vacuum 
robotic gripper is significantly lower. The efficiency of grasping 
spherical objects is 15%. Grasping is successful with larger balls 
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with a smooth surface (soccer, baseball, racquetball). With 
marbles and balls with a surface structure (tennis, golf), the 
grasp is unsuccessful (Fig. 8b). In case of marbles, the lack of 
success is due to insufficient contact area between the vacuum 
gripper and the object. 

  

Fig. 8. Grasping of (a) tomato can and (b) golf ball with vacuum gripper. 

The problem of the insufficient contact surface is even more 
evident in the case of small objects (Fig. 9a). The grasping 
efficiency of these objects is 11%. The grasp was successful 
only in the case of the credit card and the lock in the starting 
position without slipping. Using a smaller vacuum suction cup, 
it would be possible to successfully grasp all objects from the 
category of small objects except for screws and nails. 

An even lower grasping efficiency of 10% is noticed in the 
tool category. Grasping is successful only with a spoon. The rest 
of the objects are characterized by expressively uneven surfaces 
and surfaces with different structures, making it impossible to 
ensure sealing as seen in Fig. 9b. 

  

Fig. 9. Grasping of (a) washer and (b) drill with vacuum gripper. 

Sealing also cannot be ensured between the vacuum gripper 
and the deformable objects category. The exception to this is the 
magazine, which opens and bends during manipulation. 
Therefore, the manipulation cannot be performed successfully. 

3) Gecko robotic gripper 
The gecko robotic gripper achieves a minimum grasping 

efficiency of 15%. The robotic gripper efficiency was higher 
than 0% only in the case of the small objects category. Robotic 
gripper efficiency in this category of 75% is the highest among 
all tested robotic grippers. We can conclude that the gecko 
robotic gripper is intended for a narrow set of specific objects. 
The operation of the robotic gripper was very efficient in these 
objects but expressively inefficient in all the others. Rigid, flat, 
and smooth surfaces are necessary for successful grasping. Due 
to deformation, objects with deformable surfaces, such as boxes, 
bottles, and balls, are separated from the gripper (Fig. 10a). 

The application of this robotic gripper for manipulating 
deformable and sensitive objects is questionable, as objects can 
be damaged during preloading (Fig. 10a). With uneven surfaces, 

typical of tools, insufficient adhesion forces are formed between 
the robotic gripper and the objects. Therefore, the grasp is 
unsuccessful (Fig. 10b). Also, the grasp is unsuccessful on 
surfaces that are not perfectly smooth, e.g., on wooden surfaces. 
In addition, the robotic gripper is moment sensitive. When the 
manipulated object is loaded with a moment, it separates from 
the gripper, which is good when dropping objects, but 
unfavorable when grasping objects at a higher distance from 
their center of gravity. 

  

Fig. 10. Grasping of the (a) cereals box, and (b) spoon with the gecko robotic 

gripper. 

4) Soft robotic gripper 
With the soft robotic gripper, a maximum grasping 

efficiency of 95% is achieved in spherical objects category. This 
gripper is the most effective of all the grippers tested in this 
category due to how the fingers move and deform. The robotic 
gripper allows the fingers to be locked and unlocked by applying 
an overpressure or under pressure to the fingers. This gives the 
fingers enough stroke width needed to grasp larger objects such 
as a football (Fig. 11a). Due to deformable fingers, smaller 
objects such as marbles can be successfully grasped (Fig. 11b).  

  

Fig. 11. Grasping of (a) football and (b) marbles with soft robotic gripper.  

A high grasping efficiency of 88% is also achieved for 
objects in the packaging category. In these cases, the robotic 
gripper had problems with smooth surfaces (Fig. 12a). Problems 
were particularly evident for heavier objects and for Y-axis 
displacements. The displacement in the Y-axis direction causes 
the object to apply a moment to the gripper. It can be concluded 
that the problems are due to the low maximum grasping force 
and the unfavorable frictional conditions between the objects 
and the robotic gripper. 

The low grasping force and friction conditions also 
prevented the successful manipulation of some objects in the 
tool category, resulting in 66% grasping efficiency. The 
manipulation of the drill (Fig. 12b) and hammer failed due to the 
low grasping force. The manipulation of spoon and knife failed 
due to unfavorable friction conditions. Further, the low friction 
and deformability of the fingers grasping the spoon and the 
wrench resulted in a twisting of the objects inside the gripper. 
Like the classic two-fingered gripper, the soft gripper had 



problems with lower objects (spoon, knife, scissors, etc.) in this 
category when they were displaced in the Z-axis direction. 

  

Fig. 12. Grasping of (a) can of tomatoes and (b) drill with soft robotic gripper.  

The soft robotic gripper achieves a 44% grasping efficiency 
in the small object category (Fig. 13a). The low efficiency is due 
to limited control over fingertip movements. On the gripper 
tested, the two fingers did not deform in the same way, resulting 
in a tip offset (Fig. 11b). This was particularly a problem when 
grasping objects with a distinctly low height, such as credit cards 
and small washers. 

A minimum grasping efficiency of 36% is achieved for 
deformable objects category. However, for this category of 
objects, it is the most effective of all the robotic grippers tested. 
This is due to the flexibility of the robotic gripper fingers, which 
is significantly higher compared to the two-fingered gripper 
(Fig. 13b). The robotic gripper can grasp the rope, the chain, and 
the T-shirt with 70%, 40%, and 35% of success, respectively. At 
the same time, it is not able to grasp the magazine. 

  

Fig. 13. Grasping of (a) bolt and (b) chain with soft robotic gripper.  

V. MECHANICAL SOFTWARE SIMULATIONS FOR DETERMINING 

OPTIMAL GRASP POINTS 

The selection of grasp points has a major influence on bin-
picking performance. Since determining object grasp points is 
not always trivial, as in the case of simple objects, a systematic 
approach should be used. Therefore, an offline model based on 
ADAMS/MATLAB co-simulation was developed by Bencak, et 
al. [19]. The model, presented schematically in Fig. 14, has been 
designed to select the optimal grasp points for an arbitrary object 
with a two-fingered robotic gripper. 

 

Fig. 14. Shematic of ADAMS/MATLAB co-simulation model. 

A model of the two-fingered robotic gripper Robotiq FT-85 
has been developed in ADAMS, where the main gripper 
mechanical parameters have been considered. A model of the 
object has been obtained by 3D scanning and importing it into 
the ADAMS. Contacts and forces were set according to the 
materials used and based on the actual response from grasp 
evaluation. A P-force controller modeled in 
MATLAB/Simulink ensures that the gripper grasps the object 
with the prescribed force. The simulation model is controlled by 
a user interface developed in MATLAB/App Designer. A grasp-
point generator generates grasp-point pairs, which coincide with 
the actual robotic gripper location and orientation. The user 
selects the number of desired grasp points, corresponding to the 
grasp simulation performance. For higher execution speed, they 
are executed parallelly using the local MATLAB parallel pool. 
The models' main limitations are only considering rigid objects 
and setting up the correct contact parameters.  

Since the original model only considers a single height (the 
object is always picked at half its height), this proved 
problematic in some cases. Also, if the objects are randomly 
placed in the bin, they cannot always be picked at that position. 
Therefore, the model has been further developed to ensure 
picking at almost any desired height. The model of the object to 
be grasped is imported into the GUI using a top-down picture of 
the object. Since the object does not always have a constant 
height across its entire surface (Fig. 15), it is not always practical 
to grasp the object at half of the height, but only where it proves 
necessary.  

 

Fig. 15. Sliced door hinge model by layers in SolidWorks. 

This ensures that only feasible grasps are evaluated. The 3D 
model is therefore sliced in the SolidWorks program imported 
slice by slice into the GUI. The process of saving the slices into 
pictures to be imported into GUI has not been automated yet and 
will be the work of future studies. Further, grasp success is now 
graphically shown on the simulated object, which enables quick 
evaluation of grasp points (Fig. 16).  

 

Fig. 16. Grasping score of the two-fingered robotic gripper for the door hinge 

object on selected object height h = 17.5 mm.  

                     

                  

                      

      

                          

          

                      

             

                  

                        

                         

                          

        

              

            
               

                         

        

                    

                          

                   

                         

                     

      



The output of the co-simulation model is in the form of a 
table, where X, Y, Z coordinates of grasp points, and gripper 
rotation (α) along with the grasp score (S) are presented. 
Coupled with the remote control of the collaborative robot, the 
simulated grasp points can be verified on the actual system. 

VI. CONCLUSIONS 

The results of extensive benchmarking show, that robotic 
grippers behave very differently for each of the object category. 
The grasp points in this experiment were selected according to 
the user experience of the possible grasp success. Therefore, it 
would be beneficial to first perform mechanical software 
simulations in the proposed ADAMS/MATLAB co-simulation 
to elaborate on the grasp success. However, the model is still 
limited to grasp-point evaluation of the two-fingered gripper. 

The two-fingered robotic gripper had difficulty manipulating 
small objects and lower objects especially in the vertical 
direction. The weakness of the two-fingered robotic gripper is 
also the limited stroke width of the fingers, which limits the size 
of the objects that the robotic gripper can manipulate. 

The success of grasping with a vacuum robotic gripper 
mainly depends on sealing between the manipulated object and 
the vacuum cup of the vacuum gripper. The characteristics of 
the surfaces of the objects, such as porosity, structure, shape and 
size, influence sealing. By using a smaller diameter of the 
vacuum cup, it would be easier to ensure sealing and thus 
increase the success of gripping, especially smaller objects. 

The gecko robotic gripper is sensitive to properties of 
surfaces of the manipulated objects and is only suitable for 
completely flat, smooth, and rigid surfaces. The gecko robotic 
gripper is intended for a narrow set of specific objects where the 
robotic gripper works very efficiently. In all other cases, the 
operation of this robotic gripper was markedly inefficient. 

Soft gripper achieves high performance in picking spherical 
and deformable objects due to the flexibility of the fingers. For 
the packaging and tools categories, the lower performance is due 
to a combination of low grasping force and unfavorable 
frictional conditions. Imprecise fingertip movements reduce 
performance in small objects category. 
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