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Definition of Dirichlet Laplacian: weak formulation

Assumptions throughout this talk:

(1) Ω ⊆ R
n bounded, open, connected.

(2) µ = regular Borel probability measure on R
n, supp(µ) ⊆ Ω,

µ(Ω) > 0.

Poincaré type inequality:
(PI) ∃ constant C > 0 s.t.

∫

Ω
|u|2 dµ ≤ C

∫

Ω
|∇u|2 dx ∀u ∈ C∞

c (Ω). (1.1)
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Elements in the same equivalence class of H1
0 (Ω) can belong to

different equivalence classes of L2(Ω, µ). (PI) ⇒ each equivalence
class of u ∈ H1

0 (Ω) contains a unique ū ∈ L2(Ω, µ) satisfying (1.1).

Define ι : H1
0 (Ω) → L2(Ω, µ), ι(u) = ū. Let N := ker ι. Then

ι : N⊥ →֒ L2(Ω, µ).

Define a nonnegative bilinear form E(·, ·) on L2(Ω, µ) by

E(u, v) :=
∫

Ω
∇u · ∇v dx ,

with Dom(E) = N⊥ (more precisely ι(N⊥)).
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Facts: Assume (PI).

(a) Then E is closed. Denote the corresponding self-adjoint
operator by: ∆µ, Dirichlet Laplacian with respect to µ.

(b) Let u ∈ H1
0 (Ω) and f ∈ L2(Ω, µ). TFAE:

(i) u ∈ Dom(∆µ) and ∆µu = f ;

(ii) ∆u = f dµ as distributions.

∆µ(u) = utt models a (nonhomogeneous) vibrating string or
membrane with mass distribution µ.
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A sufficient condition for (PI)

Definition: The lower L∞-dimension of µ:

dim∞(µ) = lim
δ→0+

ln(supx µ(Bδ(x)))

ln δ
.

where the supremum is taken over all x ∈ supp(µ).
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Based mainly on a result of Maz’ja, we obtained:

Theorem
(Hu-Lau-N., 06) Assume that dim∞(µ) > d − 2.

(a) (PI) holds.

(b) ∃ an orthonormal basis {un}∞n=1 of L2(Ω, µ) consisting of
eigenfunctions of −∆µ.

(c) The eigenvalues of {λn}∞n=1 satisfy

0 < λ1 ≤ λ2 ≤ · · · with lim
n→∞

λn = ∞.
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Motivations:

1) Estimate the Poincaré constant = 1
λµ1
.

2) Study existence of spectral gaps.

3) Study of bounds for eigenfunctions.
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Classical results:

• Faber-Krahn, 23, 25: Let Ω ⊂ R
n and Vol(Ω) = Vol(Br (0)).

λ1(Ω) ≥ λ1(Br (0)).

Not true for manifolds!

Figure: E. Calabi: dumbbell M homeomorphic to S2, λ1 → 0 as
radius of connecting pipe (of fixed length) → 0.

• Cheeger, 70: M be a compact Riemannian manifold.

hD(M) := inf
{Vol(∂U)

Vol(U)
: U ⊂⊂ M

}

. Then

λ1 ≥
1

4
h2D(M).
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Theorem 1. Let Ω = (0, 1). Then λµ1 ≥ π.

We improve this theorem for the infinite Bernoulli convolutions:

S1(x) = rx , S2(x) = rx + 1− r , 0 < r < 1,

Let µ = µr ,p be the associated self-similar measure:

µ = pµ ◦ S−1
1 + (1− p)µ ◦ S−1

2 , 0 < p < 1.

suppµ ⊆ [0, 1].
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Proposition 2. Let µ be an infinite Bernoulli convolution on [0, 1]
with p = 1/2. Then λµ1 > π. In fact,

(a) for r ∈ (0, 1/2] (µ is a Cantor-type or Lebesgue), λµ1 ≥ 4/r ;

(b) for r ∈ (1/2, 2/3], λµ1 ≥ 24/7 ≈ 3.428;

(c) for r ∈ (2/3, 1), λµ1 ≥ 3.2.
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Definition
µ on Ω ⊆ R

n is upper s-regular if ∃c1 > 0 s.t.

µ(F ) ≤ c1|F |s for all µ measurable subsets F ⊆ Ω.

Theorem 3. Let Ω ⊂ R
2. Suppose that µ is upper s-regular for

some s ≥ 1. Let β = c1|Ω|s−1/2 with c1 being the constant above.
Then

λµ1 ≥
√
λ1
2β

.

where λ1 is the first eigenvalue of −∆.
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Ω ⊂ R
n and µ absolutely continuous. By using Cheeger’s

argument:

Theorem 4. Let Ω ⊆ R
n, µ be absolutely continuous w.r.t.

Lebesgue measure with a bounded density ρ, and

β := inf
U⊆Ω

1

µ(U)

∫

∂U
ρ dHn−1.

Then λµ1 ≥ β2/(4‖ρ‖L∞(dx)).
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Upper estimates

It is not clear how to obtain upper estimates in general.
We can obtain upper estimates for infinite Bernoulli convolution

1) Cantor type r < 1/2, and

2) golden ratio (
√
5− 1)/2.

• Erdős, 39: µ is singular (also true for other Pisot numbers).

• Lq-spectrum, multifractal formalism, and dimension (Lau-N.,
98, 99, Feng 05).

• Spectral dimension (N., 11).

• Wave equation (Chan-Teplyaev-N., to appear).
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Figure: First 100 Dirichlet eigenvalues for the Bernoulli convolution
associated with the golden ratio. (Chen-N., 10)



Introduction
Statement of main results

Proofs of main results

0 1
�
��

S1 A
AU
S2

Second-order identities by Strichartz-Taylor-Zhang, 95:

T1(x) = S1S1(x) = r2x ,

T2(x) = S1S2S2(x) = S2S1S1(x) = r3x + r2,

T3(x) = S2S2(x) = r2x + r .

0 3
�
��

T1 A
AU
T3

?
T2

1 20 3



Introduction
Statement of main results

Proofs of main results

For any Borel subset A ⊆ [0, 1],





µ(T1TjA)
µ(T2TjA)
µ(T3TjA)



 = Mi





µ(T1A)
µ(T2A)
µ(T3A)



 , j = 1, 2, 3,

where M1,M2,M3 are, respectively,




p
2 0 0

(1− p)p2 (1− p)p 0
0 1− p 0





,





0 p
2 0

0 (1− p)p 0
0 (1− p)2 0





,





0 p 0
0 (1− p)p (1− p)2p
0 0 (1− p)2





.
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Let J = j1 · · · jm, ji ∈ {1, 2, 3}. Then

µ(TJA) = cJ





µ(T1A)
µ(T2A)
µ(T3A)



 , where cJ = ej1Mj2 · · ·Mjm = (c1J , c
2
J , c

3
J ).

Define

w∗
J := µ(TJ [0, 1]) =

1

1− p + p2
cJ





p2

p(1− p)
(1− p)2



 .
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Theorem 5. Let µ = µr ,p be an infinite Bernoulli convolution and
fm be a piecewise linear approximate first eigenfunction obtained
by the finite element method.

(a) If 0 < r ≤ 1/2, then

λ
µr,p
1 ≤

∑

J∈Jm
(fm(TJ(1))− fm(TJ(0)))

2/(TJ(1)− TJ(0))
∑

J∈Jm
wJ min{fm(TJ(1))2, fm(TJ(0))2}

,

for all m ≥ 1. For the standard Cantor measure, we have

12 ≤ λ
µ1/3,1/2
1 ≤ 14.3865.

(c.f.: numerical approximation by FEM with m = 7 is
14.4353 . . . )
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(b) If r = (
√
5− 1)/2, the reciprocal of the golden ratio, then

λ
µr,p
1 ≤

∑

J∈Jm
(fm(TJ(1)) − fm(TJ(0)))

2/(TJ (1)− TJ(0))
∑

J∈Jm
w∗
J min{fm(TJ(1))2, fm(TJ(0))2}

for all m ≥ 1. In particular, if p = 1/2, we have

6.33437 ≤ λ
µr,1/2
1 ≤ 8.05171.

(c.f.: numerical approximation by FEM with m = 7 is
8.03475 . . . )
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Preparations for proofs.

Definition
Let Ω ⊆ R

n be open (not necessarily bounded), ∅ 6= K ⊂ Ω
compact. Define the 1-capacity of K relative to Ω:

Cap1(K ,Ω) := inf

{
∫

Ω
|∇ψ| dx : ψ ∈ C∞

c (Ω), ψ ≥ 1 on K

}

.

Examples:
1) K ⊂ R compact ⇔ Cap1(K ,R) = 2.
2) Cap1(K ,R

n) = 0 ⇔ Hn−1(K ) = 0.
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Proposition

(Maz’ja, Sobolev spaces) Let Ω ⊆ R
n. If ∃ a constant β > 0 s.t. ∀

compact F ⊂ Ω,
µ(F ) ≤ β Cap1(F ,Ω),

then
∫

Ω
|u| dµ ≤ β

∫

Ω
|∇u| dx ,∀u ∈ C∞

c (Ω),

Bound of µ-measure by 1-capacity −→ 1-Poincaré inequality.

We also need Rayleigh’s formula:

λµ1 = inf
f ∈DomE

∫

Ω(f
′)2 dx

∫

Ω f 2 dµ
.
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Proof of Theorem 1:

Step 1. By Rayleigh’s formula for λ1,

λ1 ≤
∫ 1
0 (f

′)2 dx
∫ 1
0 f 2 dx

, λµ1 =

∫ 1
0 (f

′)2 dx
∫ 1
0 f 2 dµ

.

Hence
λµ1
λ1

≥
∫ 1
0 f 2 dx

∫ 1
0 f 2 dµ

. (3.2)
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Step 2. For F ⊂ Ω, µ(F ) ≤ 1 and Cap1(F ,R) = 2 implies

µ(F ) ≤ Cap1(F ,R)/2.

Thus by the Proposition, For all u ∈ H1
0 (Ω),

∫ 1

0
|u| dµ ≤ 1

2

∫ 1

0
|u′| dx ∀u ∈ C∞

c (Ω). (3.3)

For u = [ū] ∈ H1
0 (Ω), take {un} ∈ C∞

c (Ω) that converges to ū
simultaneously in H1

0 (Ω) and L2(Ω, µ). Then µ(Ω) <∞ implies
that un → ū in L1(Ω, µ) and ∇un → ∇ū in L1(Ω, dx). Taking
limit.
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Step 3. (Cheeger’s argument: Convert L1-estimate to
L2-estimate.) Taking u = f 2, we get

2

∫ 1

0
f 2 dµ ≤

∫ 1

0
2|f ||f ′| dx ≤ 2

(

∫ 1

0
f 2 dx

)1/2(
∫ 1

0
(f ′)2 dx

)1/2
.

Hence

λµ1

∫ 1

0
f 2 dµ =

∫ 1

0
(f ′)2 dx ≥ (

∫ 1
0 f 2 dµ)2
∫ 1
0 f 2 dx

,

implying

λµ1 ≥
∫ 1
0 f 2 dµ
∫ 1
0 f 2 dx

. (3.4)

Combining (3.2) and (3.4) gives (λµ1 )
2 ≥ λ1 = π2.
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Prove of Theorem 3 is similar.

Step 1: Use Rayleigh formula for λ1.

Step 2: Prove that µ(F ) ≤ βCap1(F ; Ω) (needs upper s-regularity)
and thus by Proposition

∫

Ω
|u| dµ ≤ β

∫

Ω
|∇u| dx .

Step 3: Cheeger’s argument.
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Step 2: Claim: µ upper s-regular s ≥ 1 (i.e., µ(F ) ≤ c1|F |s).
Then for all compact F ⊂ Ω,

µ(F ) ≤ βCap1(F ,Ω) ∀ compact F ⊂ Ω,

where β = c1|Ω|s−1/2.

Reason: Suppose F ⊂ Ω compact and connected. F a singleton:
then µ(F ) = 0 and conclusion holds trivially for any β. F not a
singleton: its connectedness implies that Cap1(F ; Ω) > 0. Let ball
B|F | contain F . Then |F |s = π−s/2L2(B|F |)

s/2. Notice:

Cap1(F ; Ω) ≥ Cap1(F ;R
2) = Cap1(co(F );R

2) ≥ 2|F |.
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Hence

|F |s
Cap1(F ; Ω)

≤ π−s/2(L2(B|F |))
s/2

2|F | =
|F |s−1

2
≤ |Ω|s−1

2
.

Together with upper s-regularity, we get

µ(F )

Cap1(F ; Ω)
≤ C |Ω|s−1

2
.

For general compact sets, approximate from outside by the union
of countably many compact connected sets.
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Main ideas in the proof of Proposition 2: (Use some results in
Bird-Teplyaev-N. 2003)

µ =
1

2
µ ◦ S−1

1 +
1

2
µ ◦ S−1

2 .

Let u be an λµ1 -eigenfunction corresponding to with u′(0) = 1.
Known: u and u′ are continuous and

u′(x) = u′(0) − λµ1

∫ x

0
u(y) dµ(y).

Also, u′(1/2) = 0 by symmetry.
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Hence

λµ1 =
(

∫ 1/2

0
u(y) dµ(y)

)−1
=

(

∫ 1−r

0
u(y) dµ(y)+

∫ 1/2

1−r

u(y) dµ(y)
)−1

1) Use concavity of u and u′(0) = 1 to get u(y) ≤ y ∀y ∈ [0, 1].

2) Fact:
∫ 1
0 y dµ(y) = 1/2.

3) Self-similar identity.
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Proof of Theorem 4. Step 1. Suppose ∃β > 0 s.t.

β

∫

Ω
|φ| dµ ≤

∫

Ω
|∇φ| dµ ∀ φ ∈ C∞

c (Ω) (hence H1
0 ). (3.5)

Then λµ1 ≥ β2

4‖ρ‖∞
.

Take φ = f 2, f a λµ1 -eigenfunction. Assume φ ∈ H01
(Ω);

otherwise, take truncations of f and then take limit.

β

∫

Ω
f 2 dµ ≤ 2

∫

Ω
|f ||∇f | dµ ≤ 2‖f ‖L2(µ)‖∇f ‖L2(µ),



Introduction
Statement of main results

Proofs of main results

which implies that

β2

4

∫

Ω
f 2 dµ ≤

∫

Ω
|∇f |2ρ dx ≤ ‖ρ‖∞

∫

Ω
|∇f |2 dx .

Thus,
β2

4‖ρ‖∞

∫

Ω
f 2 dµ ≤

∫

Ω
|∇f |2 dx .

Notice that λµ1
∫

Ω f 2 dµ =
∫

Ω |∇f |2 dx .
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Step 2. Proof of (3.5). Using the coarea formula,
Let ψ be a nonnegative Borel measurable function on Ω and let
u ∈ C 0,1(Ω). Then

∫

Ω
ψ(x)|∇u(x)| dx =

∫ ∞

−∞

(

∫

{|ψ|=t}
ψ(x) dHn−1(x)

)

dt.

In its simplest form ψ ≡ 1, n = 2, u = “2-dim tent function”, the
formula says the area of a disk can be evaluated by integrating the
circumferences of circles making up the disk.
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∫

Ω
|∇φ| dµ =

∫

Ω
|∇φ|ρ dx =

∫ ∞

0

(

∫

|φ|=t

ρ dHn−1
)

dt

=

∫ ∞

0

( 1

µ{|φ| ≥ t}

∫

{|φ|=t}
ρ dHn−1

)

µ{|φ| ≥ t} dt

≥
∫ ∞

0

( 1

µ{|φ| ≥ t}

∫

∂{|φ|≥t}
ρ dHn−1

)

µ{|φ| ≥ t} dt

≥
(

inf
U⊆Ω

1

µ(U)

∫

∂U
ρ dHn−1

)
∫ ∞

0
µ{|φ| ≥ t} dt

= β

∫

Ω
|φ| dµ

Theorem 4 proved.
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Proof of Theorem 5.

• We choose any positive numerical first eigenfunction fm.

• fm is piecewise linear and
∫ 1
0 (f

′
m)

2 dx can be evaluated exactly.

• For
∫ 1
0 f 2m dµ, multiply the measure of an interval between two

consecutive nodes by the minimum value of fm on that
interval to get a lower bound s(fm).

• Use Rayleigh’s formula

λµ1 = min
u∈Dom(E)

∫ 1
0 (u

′)2 dx
∫ 1
0 u2 dµ

≤
∫ 1
0 (f

′
m)

2 dx
∫ 1
0 f 2m dµ

≤
∫ 1
0 (f

′
m)

2 dx

s(fm)
.
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Problems for further study:

1) Other eigenvalues λµn , n ≥ 2.

2) Spectral gap conjecture.

3) Relationship between eigenvalues and geometry of the set and
measure-theoretic properties of µ.
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Thank you!
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