5-28-2010

All I Really Need To Know, I Learned From Dr. Z

Andrew V. Sills
Georgia Southern University, asills@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/math-sci-facpres

Recommended Citation
Sills, Andrew V. 2010. "All I Really Need To Know, I Learned From Dr. Z." Mathematical Sciences Faculty Presentations. Presentation 22. https://digitalcommons.georgiasouthern.edu/math-sci-facpres/22

This presentation is brought to you for free and open access by the Mathematical Sciences, Department of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Mathematical Sciences Faculty Presentations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
All I Really Need To Know, I Learned From Dr. Z

Andrew Sills

Georgia Southern University
Opinion 60: Still Like That Old Time Blackboard Talk
Opinion 60: Still Like That Old Time Blackboard Talk

Opinion 106: Use LARGE FONTS
Opinion 60: Still Like That Old Time Blackboard Talk

Opinion 106: Use **LARGE FONTS**

Opinion 104: “For the good of future mathematics we need *generalists* and *strategians*”
A tree is a connected, acyclic graph.
A tree is a connected, acyclic graph.

The degree of a vertex v is the number of edges incident to v.
A tree is a connected, acyclic graph.

The degree of a vertex v is the number of edges incident to v.

A leaf is a vertex of degree 1.
A tree is a connected, acyclic graph.

The degree of a vertex \(v \) is the number of edges incident to \(v \).

A leaf is a vertex of degree 1.

The degree sequence of a graph is the multiset of the degrees of all the vertices, arranged in nonincreasing order.
A tree is a connected, acyclic graph.

The degree of a vertex v is the number of edges incident to v.

A leaf is a vertex of degree 1.

The degree sequence of a graph is the multiset of the degrees of all the vertices, arranged in nonincreasing order.

Trees have n vertices, and $n - k$ leaves.
The *Wiener Index* $W(T)$ of a tree with vertex set \(\{v_1, v_2, \ldots, v_n\} \) is given by

\[
W(T) := \sum_{1 \leq i < j \leq n} d(v_i, v_j),
\]

where $d(v_i, v_j)$ is the number of edges in the path from v_i to v_j.
Introduced by Harry Wiener as the path number w in
Wiener Index

Among all trees with given degree sequence

\[d_1 \geq d_2 \geq \cdots \geq d_k > 1 = d_{k+1} = d_{k+2} = \cdots = d_n, \]

find the one(s) with maximal Wiener index.
$d_1 = 3, d_2 = 2, d_3 = 2, d_4 = d_5 = d_6 = 1$
\[d_1 = 3, \quad d_2 = 2, \quad d_3 = 2, \quad d_4 = d_5 = d_6 = 1 \]
$d_1 = 3, d_2 = 2, d_3 = 2, d_4 = d_5 = d_6 = 1$
\[d_1 = 3, \quad d_2 = 2, \quad d_3 = 2, \quad d_4 = d_5 = d_6 = 1 \]

\[
\begin{array}{c}
2 \\
\downarrow \\
1 \quad 3 \\
\downarrow \\
2 \quad 1 \\
\downarrow \\
1 \\
\downarrow \\
31 \\
\end{array}
\]
\[d_1 = 3, \quad d_2 = 2, \quad d_3 = 2, \quad d_4 = d_5 = d_6 = 1\]
$b_1 = 2, b_2 = 1, b_3 = 1$

\[
\begin{array}{c}
2 \\
\hline
1 & 3 \\
\hline
2 & 1 \\
\hline
1 \\
\end{array}
\quad
\begin{array}{c}
1 \\
\hline
3 \\
\hline
2 & 1 \\
\hline
2 \\
\hline
1 \\
\end{array}
\]

31 32
A *caterpillar* is a tree which contains a central path S (the “spine”) in which every edge is contained in, or incident to, S.
If T is a tree with the maximal Wiener index for a given degree sequence, then T is a caterpillar.
Let T be a caterpillar with nonleaf spine vertices having degrees z_1, z_2, \ldots, z_k in that order. Then

$$W(T) = (n - 1)^2 + \sum_{1 \leq i < j \leq k} (j - i)(z_i - 1)(z_j - 1).$$
Theorem

Let T be a caterpillar with nonleaf spine vertices having degrees

$$1 + y_1, 1 + y_2, \ldots, 1 + y_k$$

in that order. Then

$$W(T) = (n - 1)^2 + \sum_{1 \leq i < j \leq k} (j - i) y_i y_j$$
The Problem

\[W(T) = (n - 1)^2 + \sum_{1 \leq i < j \leq k} (j - i)y_iy_j. \]

Thus we seek a permutation \(y_1, \ldots, y_k \) of the \(b_1, \ldots, b_k \) which maximizes

\[F(y_1, y_2, \ldots, y_k) := \sum_{1 \leq i < j \leq k} (j - i)y_iy_j, \]

where \(b_i = d_i - 1 \) for all \(i \).
There are 2^{k-2} “candidate permutations.”
There are 2^{k-2} “candidate permutations.”

They have a natural binary encoding from 0 to $2^{k-2} - 1$.
There are 2^{k-2} “candidate permutations.”

They have a natural binary encoding from 0 to $2^{k-2} - 1$.

Let P_j denote the evaluation of $F(y_1, y_2, \ldots, y_k)$.
There are 2^{k-2} “candidate permutations.”

They have a natural binary encoding from 0 to $2^{k-2} - 1$,

Let P_j denote the evaluation of $F(y_1, y_2, \ldots, y_k)$,

e.g. in the case $k = 5$, we have $P_{101} = P_5 = F(b_1, b_3, b_5, b_4, b_2)$
\[P_{101} = P_5 = F(b_1, b_3, b_5, b_4, b_2) \]
Use high school algebra!
Many candidates can be “weeded out” from consideration easily via “adjacent comparisons,” e.g.

\[P_1 - P_0 = (b_1 + b_2 + \cdots + b_{k-2})(b_{k-1} - b_k) \geq 0 \]

\[P_2 - P_1 = 2(b_1 + b_2 + \cdots + b_{k-3})(b_{k-2} - b_{k-1}) \geq 0 \]
Observations

Many candidates can be “weeded out” from consideration easily via “adjacent comparisons,” e.g.

\[P_1 - P_0 = (b_1 + b_2 + \cdots + b_{k-2})(b_{k-1} - b_k) \geq 0 \]

\[P_2 - P_1 = 2(b_1 + b_2 + \cdots + b_{k-3})(b_{k-2} - b_{k-1}) \geq 0 \]

The initial weed out is a subset of

\[\{ P_0, P_1, P_2, \ldots, P_{\lfloor \frac{2}{3} \cdot 2^{k-2} \rfloor} \} \]
Many candidates can be “weeded out” from consideration easily via “adjacent comparisons,” e.g.

\[P_1 - P_0 = (b_1 + b_2 + \cdots + b_{k-2})(b_{k-1} - b_k) \geq 0 \]

\[P_2 - P_1 = 2(b_1 + b_2 + \cdots + b_{k-3})(b_{k-2} - b_{k-1}) \geq 0 \]

The initial weed out is a subset of

\[\{ P_0, P_1, P_2, \ldots, P_{\left\lfloor \frac{2}{3} \cdot 2^{k-2} \right\rfloor} \} \]

\[\ldots \text{of cardinality} \]

\[\binom{k-2}{\left\lfloor \frac{k-2}{2} \right\rfloor} + \binom{k-3}{\left\lfloor \frac{k-2}{2} \right\rfloor}. \]
\[\left\lfloor \frac{2}{3} \cdot 2^{k-2} \right\rfloor \] is A000975 in OEIS.
Observations

- \(\left\lfloor \frac{2}{3} \cdot 2^{k-2} \right\rfloor \) is A000975 in OEIS.

- \(\left\{ \left(\frac{k-2}{k-2} \right) + \left(\frac{k-3}{k-2} \right) \right\} \) is A050168.
Observations

- \(\{ \left\lfloor \frac{2}{3} \cdot 2^{k-2} \right\rfloor \} \) is A000975 in OEIS.

- \(\{ (\left\lfloor \frac{k-2}{k-2} \right\rfloor) + (\left\lfloor \frac{k-3}{k-2} \right\rfloor) \} \) is A050168.

Thank you, Neil Sloane!
Sometimes nonadjacent entries in the bottom of the binary tree also factor and lead to a “secondary weed out,” e.g.

\[P_{11} - P_7 = 2(b_{k-4} - b_{k-3})(2b_1 + 2b_2 + \cdots + 2b_{k-5} - b_{k-2} + b_k) \geq 0. \]
Zhang, Liu and Han (2009)
Zhang, Liu and Han (2009)

$k = 4$: P_{11} is always maximal.
Zhang, Liu and Han (2009)

- $k = 4$: P_{11} is always maximal.
- $k = 5$:

Zhang, Liu and Han (2009)

- $k = 4$: P_{11} is always maximal.

- $k = 5$:
 - P_{111} is uniquely maximal if $b_1 - b_2 - b_3 > 0$.
Zhang, Liu and Han (2009)

- $k = 4$: P_{11} is always maximal.
- $k = 5$:
 - P_{111} is uniquely maximal if $b_1 - b_2 - b_3 > 0$.
 - P_{110} is uniquely maximal if $b_1 - b_2 - b_3 < 0$.
Maximality Characterizations For Small k

Zhang, Liu and Han (2009)

- $k = 4$: P_{11} is always maximal.
- $k = 5$:
 - P_{111} is uniquely maximal if $b_1 - b_2 - b_3 > 0$.
 - P_{110} is uniquely maximal if $b_1 - b_2 - b_3 < 0$.
 - P_{110} and P_{111} tie for maximality if $b_1 - b_2 - b_3 = 0$.
Maximality Characterizations For Small k

Zhang, Liu and Han (2009)

- $k = 4$: P_{11} is always maximal.

- $k = 5$:
 - P_{111} is uniquely maximal if $b_1 - b_2 - b_3 > 0$.
 - P_{110} is uniquely maximal if $b_1 - b_2 - b_3 < 0$.
 - P_{110} and P_{111} tie for maximality if $b_1 - b_2 - b_3 = 0$.

- $k = 6$: 11 cases.
Maximality Characterizations for Small k

- P_{1111} is uniquely maximal if $b_1 - b_2 - b_3 - b_4 > 0$.
- P_{1111} and P_{1110} tie for maximality if $b_1 - b_2 - b_3 - b_4 = 0$.
- P_{1110} is uniquely maximal if $b_1 - b_2 - b_3 - b_4 < 0$ and $b_1 - b_2 - b_3 > 0$.
- P_{1110} and P_{1101} tie for maximality if $b_1 - b_2 - b_3 = 0$.
- P_{1101} is uniquely maximal if $b_1 - b_2 - b_3 < 0$ and $b_1 - b_2 - b_3 + b_4 > 0$ and $3b_1 - 3b_2 - b_5 + b_6 > 0$.
- P_{1101} and P_{1100} tie for maximality if $b_1 - b_2 - b_3 = 0$ and $3b_1 - 3b_2 - b_5 + b_6 > 0$.
- P_{1101} and P_{1011} tie for maximality if $3b_1 - 3b_2 - b_5 + b_6 = 0$ and $b_1 - b_2 - b_3 + b_4 > 0$.
- P_{1101}, P_{1100}, and P_{1011} are in a three-way tie for maximality if $3b_1 - 3b_2 - b_5 + b_6 = 0$ and $b_1 - b_2 - b_3 + b_4 = 0$.
Maximality Characterizations for Small k

- P_{1100} is uniquely maximal if $3b_1 - 3b_2 - b_5 + b_6 \geq 0$ and $b_1 - b_2 - b_3 + b_4 < 0$; or if $3b_1 - 3b_2 - b_5 + b_6 \leq 0$ and $3b_3 - b_4 - b_5 + b_6 > 0$.

- P_{1011} is uniquely maximal if $b_1 - b_2 - b_3 + b_4 \geq 0$ and $3b_1 - 3b_2 - b_5 + b_6 < 0$.

- P_{1011} and P_{1100} tie for maximality if $3b_1 - 3b_2 - b_5 + b_6 < 0$ and $3b_3 - 3b_4 - b_5 + b_6 = 0$.
For $k = 7$ there are 1312 cases.
For $k < 9$, the initial and secondary weed out show that the optimal permutation cannot be on the left side of the binary tree.
Conjectures and Questions

For \(k < 9 \), the initial and secondary weed out show that the optimal permutation cannot be on the left side of the binary tree.

For \(k \geq 9 \), can there be an optimal permutation on the left side, i.e. where \(b_2 = y_2 \)?