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Abstract

The zero-forcing number, Z(G) is an upper bound for the maximum nullity of all symmetric matrices
with a sparsity pattern described by the graph. A simple lower bound is δ ≤ Z(G) where δ is the
minimum degree. An improvement of this bound is provided in the case that G has girth of at least 5.
In particular, it is shown that 2δ − 2 ≤ Z(G) for graphs with girth of at least 5; this can be further
improved when G has a small cut set. Lastly, a conjecture is made regarding a lower bound for Z(G) as
a function of the girth and δ; this conjecture is proved in a few cases and numerical evidence is provided.

1 Introduction

The problem of determining the minimum rank of a graph seeks the minimum rank over all symmetric
matrices whose sparsity pattern is determined by the graph. The zero forcing process, and the associated
zero forcing number, were introduced by [1] and [6] in order to bound the minimum rank of a graph (and
hence the maximum nullity). Further, the zero forcing process and its variants have expanded applications in
power network monitoring [13, 17], quantum physics [6], and logic [7]. Since then, the zero forcing number has
gained much attention in graph theory and has been related to many graph theoretic parameters including
minimum degree, d’arboresense, treewidth, pathwidth, among others [3]. We give a detailed description of
the zero forcing process in the next section.

In general, the study of the zero forcing number is challenging for many reasons. First, it is difficult to
compute exactly, as it is NP-hard [9]. Further, many of the known bounds leave a wide gap for graphs in
general. For example, given the minimum and maximum degree of a graph, δ and ∆ respectively, the zero
forcing number on a graph with n vertices can be as low as δ [3] , and as high as n∆

∆+1 [2].
To date, the only result concerning minimum rank or zero forcing and triangle-free graphs is given by

Deaett [10] where it is shown that the semidefinite minimum rank of a triangle-free graph is bounded below
by half the number of vertices. Our main contribution is the improvement of the lower bound mentioned
above in the case of triangle free graphs and graphs with larger girth.

This paper is organized as follows: In Section 2 we give the basic definitions and background. Next, we
provide our main results with proofs in Section 3. Finally, in Section 4, we conjecture improvements to our
main results and provide computational evidence.

2 Preliminaries

Let G = (V,E) be a simple graph with vertex set V and edge set E. We will use standard notation: n = |V |,
m = |E|, minimum vertex degree δ(G) = δ, and maximum vertex degree ∆(G) = ∆. The girth of a graph G,
denoted g, is the length of its shortest cycle. If G is a tree, by convention, we say that g =∞. When g > 3,
we call a graph triangle-free. The open neighborhood of a vertex v, denoted N(v), is the set of all vertices
adjacent to v, excluding v itself. The closed neighborhood, N [v], includes v. In addition, given S ⊂ V , let
G[S] denote the graph induced by S.

We now define the zero forcing process as first described by [1]: Let S = S0 be an initial set of “colored”
vertices. All other vertices are said to be “uncolored”. At each time step, all colored vertices with exactly
one uncolored neighbor will change, or force, their uncolored neighbor to be colored (note that two or more
vertices may force the same vertex to become colored). A set S ⊂ V of initially color vertices is called a zero
forcing set, if by iteratively applying the zero forcing process, all of V becomes colored. The zero forcing
number of a graph G, denoted by Z(G), is the cardinality of a smallest zero forcing set of G, and has been
shown to be an NP -hard invariant [10, 16].

In our analysis, we will pay close attention as to when each vertex becomes colored and forces in the
iterative zero forcing process. We say the process is at time t if the color-change rule has been applied exactly
t times. The set of colored vertices at time t is denoted St. For convenience, we will call a vertex active at
time t if it will force at time t+ 1.

A classical lower bound for the zero forcing number is the following:
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Proposition 2.1 (see, for example, [1, 3]). For any graph G,

Z(G) ≥ δ.

In a similar manner, Amos, Caro, Davila, and Pepper recently provided an upper bound for the zero-
forcing number:

Proposition 2.2 (Amos-Caro-Davila-Pepper [2]). For any graph G with δ ≥ 1,

Z(G) ≤ n∆

∆ + 1
.

Further, it is clear that Z(G) = n−1 if and only if G = Kn. This result leads to the following proposition.

Proposition 2.3 (see, for example [15]). Let G be a graph with non-empty components and order n. Then,

Z(G) ≤ n− 2,

whenever G 6= Kn.

One of the primary motivations of zero forcing is the study of minimum rank of a graph. Given a field
F , the minimum rank of a graph over F , denoted mrF (G), is the minimum rank over all symmetric n × n
matrices M with entries from F such that Mij = 0 whenever i 6= j and {i, j} is not an edge and Mij 6= 0
when {i, j} is an edge; the diagonal entries may take any value. The important connection between the
minimum rank of graph and zero forcing is the following:

Proposition 2.4 (AIM-Group [1]). For any graph G and any field F ,

Z(G) ≥ n−mrF (G).

3 Main Results

In this section, we describe our main results. The main idea of this paper is that Proposition 2.1 can be
improved under mild requirements.

Lemma 3.1. Let G be a triangle-free graph with δ ≥ 3. Let S be a minimum zero forcing set of G. Let
v ∈ S force w at time t = 1, then w has at least one neighbor not in S.

Proof. Let G be a graph with δ ≥ 3, and let S0 be a minimum zero forcing set of G such that v forces
w at time t = 1. By way of contradiction, assume that N(w) ⊂ S0. Since δ ≥ 3, we know there exists
z ∈ N(w) \ {v}. Since G is triangle-free, we know z /∈ N(v). Starting with a uncolored copy of G, define an
initial set of colored vertices S′0 = S0 \ {z}. Since v is not adjacent to z, v forces w at time t = 1 under the
new coloring S′0. Since we have assumed that N(w) is initially colored in S0, we know that N(w) \ {z} is
colored in S′0. It follows that at time t = 2, w will have d(w)− 1 neighbors colored, and hence will force z.
So we have shown that S0 ⊂ S′2. Since S0 was a zero forcing set of G, S′0 must also be a zero forcing set of
G, contradicting the minimality of S0.

Theorem 3.2. Let G be a triangle-free graph with minimum degree δ ≥ 3. Then,

δ + 1 ≤ Z(G).

Proof. Suppose G is triangle-free, and let S be a zero forcing set realizing Z(G). Since G is not a complete
graph, nor an empty graph, by Proposition 2.3, we know at least two initially uncolored vertices exists and
hence at least two vertices must force. Let v and w denote these two forcing vertices. Note that v and w may
force at separate times. Without loss of generality, suppose v forces v′, at time t = 1. Hence, N [v]\{v′} ⊆ S.
It suffices to show that there is an initially colored vertex not in N [v] \ {v′} at time t = 1.

Since w is assumed to force eventually, we have the following cases:
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1. w forces at time t = 1.

2. w forces at time t ≥ 2.

Case 1. Suppose w forces w′, at time t = 1. If w is not in the neighborhood of v, then since w was
initially colored, we are done. Hence, suppose w is in the neighborhood of v. Then because G is triangle-free,
w cannot be adjacent to any neighbors of v, otherwise G would have a triangle. Furthermore, by assumption
δ ≥ 3, so w must have at least one neighbor other than v and w′, z (say). Since w forces w′ at time t = 1,
z must be colored at time t = 0. Since w is adjacent to v, z cannot be a neighbor of v, otherwise G would
contain a triangle. Therefore, z is initially colored outside N [v] \ {w}, and we are done. Altogether if there
are two vertices v and w that force at time t = 1, the theorem holds. For for the remaining case we may
assume that v is the unique forcing vertex at time t = 1.

Case 2. Suppose that w forces at some time t ≥ 2. Since forcing steps occur at each time step, there
must be a vertex that forces at time t = 2; without loss of generality, assume that it is w. Since w became
active at time t = 1, and since v is assumed to be the unique forcing vertex at time t = 1, it must be the case
that either v forced w or a neighbor of w. If v forces w, then we are done by Lemma 3.1. Otherwise v forced
a neighbor of w, and therefore w cannot be in the neighborhood of v as G would contain a triangle.

The following lemma is a useful tool for finding large zero forcing sets.

Lemma 3.3. Let S be a set of colored vertices of G, and let B ⊆ S be a set of vertices whose entire
neighborhood is colored. Then S is a zero forcing set of G if and only if S \ B is a zero forcing set of
G[V \B].

Proof. Necessity: Suppose that S \ B is a zero forcing set of G. It follows that coloring S along with any
vertices outside of S must also be a zero forcing set. Hence, S ∪B is a zero forcing set of G.

Sufficiency: Suppose that S ⊆ V is a zero forcing set of G. Let B ⊆ S be a set of colored vertices with
only colored neighbors. Note that every vertex of B is inactive. Furthermore, any currently active vertex
will be active in the graph V \B, since no vertex in B has any white neighbors, and hence any active vertex
in S will have exactly one white neighbor in V \B. Forcing chains will hence proceed as if they were in G,
and must force the rest of the graph.

The following theorem improves on Proposition 2.2 for some families of graphs, such as cycles, but in
general is non-comparable.

Theorem 3.4. Let G be a graph with girth g ≥ 3. Then,

Z(G) ≤ n− g + 2.

Proof. Let G be a graph with girth g. Let C ⊆ V , be set of vertices realizing the girth of G that induce a
cycle. Clearly, V \ C together with any two neighbors in C form a zero forcing set of G.

Lemma 3.5. Let G be a triangle-free graph with minimum degree δ ≥ 2. If there exists a minimum zero
forcing set which requires at least two neighbors to force at time t = 1, then

2δ − 2 ≤ Z(G).

Proof. Since δ = 2 satisfies the Lemma 3.5 trivially, assume G is a triangle-free graph with δ ≥ 3 and with
a zero forcing set S which requires at least two neighbors to force at time t = 1. Let v and w be elements
of S which are neighbors and both force at time t = 1. Since G is triangle-free, v and w cannot share any
neighbors. Hence the colored neighbors of v and w contribute together at least 2(δ− 1) members of the zero
forcing set S.

For graphs with girth greater than 4, we are able to show that the minimum degree lower bound can be
improved by a factor of almost 2.
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Theorem 3.6. Let G be a graph with girth g ≥ 5, and minimum degree δ ≥ 2. Then,

2δ − 2 ≤ Z(G).

Proof. Notice that when δ = 2, the theorem holds. So we consider graphs with δ ≥ 3.
Let G be a graph with girth g ≥ 5, and minimum degree δ ≥ 3. Let S be a zero forcing set realizing

Z(G). Since G is not a complete graph, nor an empty graph, we know at least two forcing vertices exist, v
and w (say). Note that v and w may force at separate times. Without loss of generality, suppose v forces v′

(say), at time t = 1. Hence, N [v] \ {v′} ⊆ S.
Since w is assumed to force eventually, we have the following cases:

1. w forces at time t = 1.

2. w forces at time t ≥ 2.

Case 1. Suppose w forces w′ (say), at time t = 1. Note w is either in the neighborhood of v, or it isn’t.
If w is not in the neighborhood of v, then because w and all neighbors of w other then w′ were colored at
time t = 0, we have

|S| ≥ δ + δ − k,
Where k is the (possibly zero) number of vertices in(

N [v] \ {v′}
)
∩
(
N [w] \ {w′}

)
.

Because g ≥ 5, w cannot be adjacent to more than one neighbor of v, since otherwise v, w, and the two
shared neighbors would induce a 4-cycle. Hence,

|S| ≥ δ + δ − 1

= 2δ − 1

> 2δ − 2,

and the theorem holds.
Next suppose w is in the neighborhood of v. Then, because G is triangle-free with δ ≥ 3, we recall lemma

3.5, and get,
|S| ≥ 2δ − 2.

If w forces at time t = 1, the theorem holds. Since w was arbitrary, if any vertex other than v forces at
time t = 1, then the theorem holds. Hence, for Case 2 we may assume that v is the unique forcing vertex at
time t = 1.

Case 2. Suppose that w forces at some time t ≥ 2. Since forcing steps occur at each time step, there must
be a vertex that forces at time t = 2, without loss of generality we take w to be this vertex. Since w became
active at time t = 1, and since v is assumed to be the unique forcing vertex at time t = 1, it must be the
case that v forced a neighbor of w, i.e., v′ is a neighbor of w. Because v forced a neighbor of w, w cannot be
in the neighborhood of v, since otherwise v,v′, and w would induce a triangle. It follows that w was initially
colored. Furthermore, since w is a forcing vertex at time t = 2, it must have at least δ − 1 neighbors that
are colored at time t = 1. Since v was the unique forcing vertex at time t = 1, the neighbors of w colored
at time t = 1, must have been initially colored at time t = 0. Since g ≥ 5, v and w cannot share neighbors,
since otherwise the neighbors v and w share, along with v, v′, and w, would induce a 4-cycle. Hence,

|S| ≥
∣∣N [v] \ {v′} ∪N [w] \ {w′}

∣∣
=

∣∣N [v] \ {v′}
∣∣ +

∣∣N [w] \ {w′}
∣∣

≥ δ + δ

= 2δ

> 2δ − 2,

and the theorem holds.
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Before moving to the proofs of Theorems 3.8 and 3.9, we make note of a theorem attributed to Edholm
Hogben Hyunh LaGrange and Row:

Theorem 3.7 (Edholm-Hogben-Hyunh-LaGrange-Row [11]). Let G be a graph on n ≥ 2 vertices, then:

1. For v ∈ V (G), Z(G)− 1 ≤ Z(G− v) ≤ Z(G) + 1.

2. For e ∈ E(G), Z(G)− 1 ≤ Z(G− e) ≤ Z(G) + 1.

First we consider graphs with a cut vertex, such that after removal of such a vertex, the resulting graph
has at least one component with girth at least 5. We improve on Proposition 2.1 by close to a factor of 3
for such graphs.

Theorem 3.8. Let G be a graph with δ ≥ 3 and a cut vertex v such that G− v has a component with girth
at least 5. Then,

3δ − 6 ≤ Z(G).

Proof. Let G be a graph with minimum degree δ ≥ 3 and a cut vertex v such that G− v has a component
with girth at least 5. Let G − v have components H1 and H2. Without loss of generality suppose H1 has
girth at least 5. Recall Z(G− v) ≤ Z(G) + 1 by Theorem 3.7. Since zero forcing is additive with respect to
disjoint components we have

Z(H1) + Z(H2) ≤ Z(G) + 1.

Further, note that δ(H1) ≥ δ − 1 and δ(H2) ≥ δ − 1, since deleting v from G at most reduced the degree of
the components by 1. By Theorem 3.6, we know that

2(δ − 1)− 2 ≤ Z(H1).

By the minimum degree lower bound we know δ − 1 ≤ Z(H2), and hence

(2(δ − 1)− 2) + (δ − 1) = 3δ − 5

≤ Z(H1) + Z(H2)

≤ Z(G) + 1.

Rearranging terms, we get our desired result 3δ − 6 ≤ Z(G).

For graphs with a cut edge and girth at least 5, we can drastically improve the minimum degree lower
bound, as illustrated by the following theorem.

Theorem 3.9. Let G be a graph with minimum degree δ ≥ 3, girth g ≥ 5, and cut edge e. Then,

4δ − 9 ≤ Z(G).

Proof. Let G be a graph with minimum degree δ ≥ 3, girth g ≥ 5, and cut edge e such that G−{e} = H1∪H2.
Since no cut edge of G may lie on a cycle, we know that each component H1 and H2 has girth at least 5.
Recall Z(G − e) ≤ Z(G) + 1, from Theorem 3.7. Since zero forcing is additive with respect to disjoint
components we have

Z(H1) + Z(H2) ≤ Z(G) + 1.

Note that δ(H1) ≥ δ − 1 and δ(H2) ≥ δ − 1, since deleting e from G at most reduced the degree of the
components by 1. By Theorem 3.6, we know that,

2(δ − 1)− 2 ≤ Z(Hi), i = 1, 2.

Hence,

(2(δ − 1)− 2) + (2(δ − 1)− 2) = 4δ − 8

≤ Z(H1) + Z(H2)

≤ Z(G) + 1.

Rearranging, we get our desired result, 4δ − 9 ≤ Z(G).
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The following theorem generalizes the previous two theorems to include k-connected graphs:

Theorem 3.10. Let G be a graph and suppose there exists a set of vertices K = {v1, ..., vk} such that
δ(G \K) ≥ 2 and G \K has induced girth at least 5. Then,

2δ − 3k − 2 ≤ Z(G).

Proof. Let K be a set of k vertices whose removal from G forms a subgraph with girth at least 5 and
minimum degree at least 2. Next observe that Z(G \ K) ≤ Z(G) + k. Since removing a vertex will most
decrease the minimum degree of G by one, removing k vertices will at most reduce the minimum degree
of G by k. By Theorem 3.6, we have 2δ(G \ K) − 2 ≤ Z(G \ K) ≤ Z(G) + k. Rearranging terms we get
2δ − 3k − 2 ≤ Z(G).

4 A General Conjecture

In this section, we make a conjecture regarding improvements to Theorems 3.2 and 3.6. We provide intuitive,
numerical, and theoretical justification for these conjectures. We conjecture a lower bound for Z(G) that is
dependent on both the girth g and minimum degree δ:

Conjecture 1. Let G be a graph with girth g ≥ 3 and minimum degree δ ≥ 2. Then,

(g − 3)(δ − 2) + δ ≤ Z(G).

The intuitive reasoning behind this conjecture is the following. Let G be a graph with girth g and
minimum degree δ. Consider any path v0 → v1 → . . . → v` such that vi forces vi+1 for all i and v0 forces
v1 at t = 0. It must be the case that, for all 0 < j < g and 0 ≤ k ≤ g, vj is not adjacent to vk. Hence, vj
requires at least δ − 2 neighbors outside of the path to be colored. Under the assumption that each of these
vertices requires a distinct initially colored vertex in order to become colored, each v1, v2, . . . , vg−3 require
a total of (δ − 2)(g − 3) initially colored vertices. Note that beginning with j = g − 2, the neighbors of vj
may, in fact be the neighbors of v0 without violating the girth condition. Hence, together with the initial δ
vertices needed for v0 to force v1 requires at least δ + (δ − 2)(g − 3) vertices to be initially colored.

In addition, we can prove the following:

Proposition 4.1. Given girth g > 6, Conjecture 1 is true for sufficiently large minimum degree δ, regardless
of n.

To prove this proposition, we use the treewidth parameter, denoted tw(G), as an intermediary. Treewidth
is a graph parameter regarding the decomposition of the graph into sets, however, the details are not
important for our application.

We apply two results together to prove Proposition 4.1: an exponential lower bound on treewidth in
terms of δ and g, and a lower bound on Z(G) in terms of treewidth:

Theorem 4.2 (Chandrana and Subramanian [8]). Let G be a graph with average degree d̄, girth g, and
treewidth tw(G). Then,

tw(G) ≥ (d̄− 1)b(g−1)/2c−1

12(g + 1)

Theorem 4.3 (Barioli-Barrett-Fallat-Hall-Hogben-Shader-van der Holst [3]).

tw(G) ≤ Z(G)

Proof of Proposition 4.1. Given g, choose δmin large enough such that

(δmin − 1)b(g−1)/2c−1

12(g + 1)
≥ δmin + (δmin − 2)(g − 3).
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This is guaranteed for g > 6 as the left side has polynomial degree at least 2 in δ. In which case, by the
previous two theorems, we have

δmin + (δmin − 2)(g − 3) ≤ (δmin − 1)b(g−1)/2c−1

12(g + 1)

≤ (d̄− 1)b(g−1)/2c−1

12(g + 1)

≤ tw(G)

≤ Z(G).

Hence, given g, the conjecture holds true for all graphs with δ > δmin.

We are able to numerically verify our conjecture for a large number of graphs. However, considering that
calculating the zero forcing number of a graph is NP-hard [9], it is difficult to test. We write a compact
algorithm in Mathematica in order to compute Z(G) using a brute-force approach. In turn, we are able to
confirm Conjecture 1 for all 542 triangle-free graphs in the Wolfram database with between 9 and 22 vertices.
In fact, our computation shows that for more than 37% of these graphs, the conjecture is sharp. Conjecture
1 appears to be sharp for several interesting graphs including the Petersen Graph, the Heawood Graph and
several families of graphs as well including cycles, 2× 2× k grids, complete bipartite graphs, among others.

Furthermore, taking g = 4 in Conjecture 1, yields a conjecture this is similar in nature to the results
presented in Section 3:

Conjecture 2. Let G be a triangle-free graph with minimum degree δ ≥ 2. Then,

2δ − 2 ≤ Z(G).

5 Concluding Remarks

The results presented in this paper show a link between the girth and minimum zero forcing sets. In
particular, the theorems presented provide evidence in favor to Conjectures 1 and 2. Further, the connection
between minimum degree and minimum zero forcing sets remain, since the minimum degree appears in all
of presented theorems. Future work will include working toward resolving Conjectures 1 and 2, but also will
include finding new lower bounds on the zero forcing number in terms of simple graph parameters such as
degree, number of edges, and number of vertices.
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