The Camellia Species Collection, located in front of Jenkins Hall, represents the newest addition to the AASU Arboretum. Of the 270 species of Camellia recorded, only a few are well known. *Camellia japonica* and *Camellia sasanqua* are the most popular species because of their ornamental value. *Camellia sinensis*, instantly recognizable by its common name Tea, produces the tea we drink. *Camellia oleifera* provides some countries an important source of oil used in the cosmetic and food industries. The Camellia Species collection features these plants and some of the lesser known representatives of the genus.

The following list describes the newest additions to our collection.

All camellia species originate from a relatively small region in Southeast Asia. Many are native to only a few provinces in China. Use the map on page five to see where our camellias are from.

Camellia albogigas - A small tree up to 25 feet tall, *C. albogigas* displays large, white flowers up to four inches across and large, stiff, leathery leaves. This species originated in the Guangdong Province, China.

Camellia brevistyla - A slender tree that reaches 15 to 25 feet tall, this camellia produces numerous small, white flowers one inch across and will develop attractive orange colored bark. This species establishes itself quickly on deforested areas in the wild and cultivates easily. *C. brevistyla* grows in Taiwan and Fujian, Guangdong, Guangxi, Anhui, and Jiangxi Provinces, China.

Camellia chekiangoleosa - A small tree up to 18 feet tall, this camellia produces large red flowers with yellow stamens up to four inches across. The botanical epithet combines the province name Chekiang (now spelled Zhejiang), with *oleosa*, meaning 'oily'. Not surprisingly, the seeds of this plant have a high oil content. Closely related to *C. japonica*.

(Continued on page 4)
CONSTRUCTION BEGINS ON INTERNATIONAL GARDEN

Construction of the International Garden began in December and installation of most of the sidewalks, main irrigation lines, and electrical lines should conclude by March 2004. A brick sidewalk and compass logo, installed by Coastline Concrete Services, Inc., highlight the south entrance of the garden across from Shearhouse Plaza. The bricks in the sidewalk are available to purchase and engrave. Rolland Keller, owner and operator of Coastline Concrete Services, Inc. admitted that the brick compass rose design presented a challenge to create. He said, “It was the most complicated job we had ever laid out.” Work on the European Plaza with its 1200 square foot brick event area, 18-foot diameter gazebo, and adjacent amphitheater should finish by June. Groundbreaking on the Asian Plaza should take place in early summer. This section will include many Japanese garden components including raked gravel beds, a teahouse, stone lanterns, and a small bubbling fountain. If you are interested in purchasing a brick for engraving or sponsoring a plaza, call Clint Nessmith in the Department of External Affairs at 912-921-5415.

Who We Are

Name- Elliot Spitler

Number of years worked at AASU- 9 months

Job duties- Planting, trimming, basic plant maintenance and beautification through the seasons.

Favorite part of job- Working outside. Working with the land.

Favorite plant on campus- A difficult question to say the least. There are several plants scattered throughout campus that I find both unique in form and beautiful in appearance. I am reminded immediately of the Agave, of which we have several planted along the southwest corner of the Science Center and on the west side of Solms Hall. Vernacularly known as the Century Plant (for the amount of time it takes before they flower), the Agave is a unique aloe-looking plant indigenous only to the Americas; and in Mexico, the fermented heart is the source of the alcoholic beverages of pulque, mescal, and tequila. Along the line of the Agave, yuccas are interesting Mesoamerican plants. Yuccas vary greatly in habit; some remain rather short, spiky specimens, while others, like the famous Joshua Tree of the Mojave desert, are tall, haunting sights to behold. We have yucca with lovely yellow centers recently planted along the west side of Solms Hall. My vote for the most spectacular display of color would easily go to the hydrangeas, in particular, the specimens in front of Lane Library. I challenge anyone to find a more dynamic explosion of blues and purples in any flower anywhere. For you Lord of the Rings fans out there I’ve got a plant that might draw your interest. Found at the northwest corner of Gamble Hall, this plant seems to be nothing short of a most curious cross between bamboo and lizards. Known simply as Horsetails, these prehistorically peculiar, but no less charming plants, would easily be at home in the valley bogs of Tolkien’s

(Continued on page 3)
middle earth. And for the lovers of "the land down under" or anything else antipodal, be sure to keep your eyes properly peeled while strolling the curbs and ways of University Hall. If you should happen upon a large shrub with thousands of bright red, bee covered, nectar-dripping, hairy-like flowers, then you’ve just been introduced to the Bottlebrush Bush: one of Australia’s finest. Nearby is our hunching Eucalyptus, or Gum Tree; full of medicinal oils in the leaves and wonderfully textured, aromatic bark. The eucalyptus is undisputedly one of the great trees of Oceania. I’m also a sucker for fruiting plants, especially fruit one can eat. We have figs (milky sap and all), banana shrubs (yes they do fruit, but not what I would call particularly appetizing, although I never seem to learn this), persimmons (an acquired taste if one is inclined to acquire it), loquats (a sweet little fruit from East Asia whose seed color is reminiscent of polished mahogany), Flying Dragon Hardy Oranges (more like sour oranges, but the twisting, gnarled, thorned whimsy of the branches actually make the acridity worth it), pomegranates (produced beautiful flowers, but no fruit as yet, although I have faith they one day will). And, if you look carefully you just may cross paths with cherries, muscadine grapes, and Japanese Apricots. But if I had to choose one plant on campus it would most decidedly be a sentimental favorite. The California Golden Poppy, planted in front of Public Safety, is a small, fragile-looking, but tough as hell plant that is inextricably linked with my childhood. I recall every spring, after the winter rains had retreated far out to the Pacific, the green coastal hills would transform their ubiquitous Mediterranean scrub into vistas of soft, fiery fields of orange from the thousands upon thousands of poppy flowers. It was just this profusion of color that lead the first Spanish conquistadors to proclaim from their galleons that this perceived island of California was indeed a golden land.

What do you like to do for fun when you’re not at work? - I find the marshes and Sea Islands of the Georgia coast to be one of the truly stunning ecosystems of the American landscape. The way the saltwater, the fresh water, and the land dissolve into each other, possesses within its processes a sort of truth about life that I fear most of us miss as we rush to talk on cell phones while scurrying between classes. Although I don’t get out into it as much as I would like, I am grateful each morning as I come to work and see the sun crest over the seas of grass, the palmettos, and the Spanish moss swaying from the oaks.

Those Tiny Little Tea Leaves

Green tea and black tea come from the same plant. The specific variety of tea and the way it is processed after harvesting determine the type of tea created. Green teas are often referred to as unfermented teas. The traditional method of processing green teas is comprised of withering, heating, rolling, and drying. After picking, the fresh leaves are spread out on trays and exposed to sunlight or warm air for a few hours. Then the leaves are heated to prevent oxidation and preserve freshness. Finally, the leaves are rolled into various shapes and then dried. Black teas, also known as red tea in China, are traditionally processed by withering, rolling, oxidizing, and drying. First the leaves are spread on racks or trays to be wilted until soft enough to roll without tearing the leaf. Next, the withered leaf is rolled to release the chemicals in the leaf that will contribute to the tea’s final color and flavor. The rolled leaves are then spread out in cool humid rooms where oxidation, also known as fermentation, takes place. Finally, the leaves are heated to stop the oxidation process.

"In my own hands I hold a bowl of tea; I see all of nature represented in its green color. Closing my eyes I find green mountains and pure water within my own heart. Silently, sitting alone, drinking tea, I feel these become part of me. Sharing this bowl of tea with others, they, too, become one with it and nature."

- Soshitsu Sen XV
ponica, this species came from Zhejiang, Jiangxi, Fujian, and Hunan Provinces, China.

Camellia crapnelliana - A tree from 20 to 25 feet tall, this plant displays smooth, brick-red bark and four inch wide floppy, white flowers. It was discovered by Mr. W. J. Tutcher in 1903 as a single surviving tree on Hong Kong Island and named after Mr. A. E. Crapnell who often traveled with Tutcher on his botanical expeditions. It has since been found in the Chinese Provinces of Guangxi, Zhejiang, and Fujian.

Camellia cuspidata - This shrub-sized camellia will grow to 10 feet tall and produces small white flowers one inch across that crowd the ends of its branches. One of the most cold-hardy camellias, *C. cuspidata*, has small, dark green leaves with a purplish tint and coppery-colored new growth. It grows in Shaanxi, Sichuan, Yunnan, Guangxi, Guangdong, Fujian, and Jianxi Provinces, China.

Camellia japonica - This species is native to Japan, Korea, and southern and eastern China.

Camellia japonica 'Unryu-tsubaki' - Zigzag Camellia - With stems that make a 45-degree turn at every node, this camellia looks twisted, contorted, and weird. The Japanese prefix ‘Unryu’ translates to ‘dragon in the clouds’. Originating in Izu Oshima, Japan, the arrangement of stems and leaves was said to resemble a dragon ascending into the sky.

Camellia oleifera - Tea-Oil Camellia - Although the specific epithet implies that it has eight petals, this plant can have anywhere between eight and 13 white petals per flower. Cultivated for seed-oil and bearing a fruit that resembles a rough, brown apple, this small tree grows between 10 and 20 feet tall and is native to the Chinese province of Zhejiang.

This page continues on page 5...
Camellia sinensis - This large leaved variety of Tea, growing into a tree up to 50 feet tall in the wild, essentially replaced *C. sinensis var. sinensis* in most commercial tea plantations, especially in India, Sri Lanka, and Kenya. This variety grows naturally in Guangxi, Hainan, Guangdong, Yunnan Provinces, Vietnam, and Assam.

Camellia sinensis var. assamica - This large leaved variety of Tea, growing into a tree up to 50 feet tall in the wild, essentially replaced *C. sinensis var. sinensis* in most commercial tea plantations, especially in India, Sri Lanka, and Kenya. This variety grows naturally in Guangxi, Hainan, Guangdong, Yunnan Provinces, Vietnam, and Assam.

Camellia sinensis var. sinensis - A small leaved variety of tea and widely cultivated in Japan for tea production, this form makes an excellent ornamental in the landscape.

Camellia vietnamensis - Developing into a small tree and native to Guangxi Province, China and Vietnam (as the name suggests), this species produces four inch flowers with white or tinted green petals.

Camellia japonica - Utilized for centuries in China and grown commercially since the 1940’s, this camellia produces ‘tea-oil’, a thin, clear oil used for cooking and cosmetics. Fragrant, white flowers develop into marble-sized seeds with a 50-percent oil content. Forming a tree to 25 feet tall, this plant can grow in full to partial sun and is widely distributed in South China.

Camellia ptilophylla - A confusing plant to classify because of its similarity to *C. sinensis* (see Lumpers and Splitters below), this camellia produces little, white, five petaled flowers on small trees growing up to 18 feet tall. It originated in Guangdong Province, China.

Camellia sinensis - Tea - Probably the most important camellia species, Tea produces small white flowers on shrubs growing to six feet tall. The history of tea begins in 2737 BC, when the Chinese Emperor Shen Nung discovered tea by accident. According to Chinese folklore, this scholar and herbalist was sitting beneath a tree while his servant boiled drinking water when a leaf from an overhanging branch fell into the kettle. The aroma of the leaves steeping in the hot water intrigued Shen Nung, who then decided to taste the infusion. After further experimentation, he found the drink to have medicinal properties as well as a pleasing taste. The emperor encouraged the Chinese people to cultivate the plant for the benefit of the nation. *Camellia sinensis* grows in the Chinese provinces of Guangxi, Guangdong, Yunnan, Anhui, Jiangxi, Zhejiang, Fujian, Hunan,

Sichuan, Guizhou, as well as Tibet, Japan, Indonesia.

Lumpers and Splitters

The genus *Camellia* has changed considerably as the number of species described by botanists increased from the original two, *C. japonica* and *C. sinensis*, listed by Carl Linnaeus (1735) as the genera *Camellia* and *Thea*, up to the present day 267. In 1958, J. Robert Sealy attempted to fully organize the genus by producing the manuscript, *A Revision of the Genus Camellia*, in which he described 87 species. In 1981, Chang Hungta of the Sunyatsensi University, Nanjing, China, published his monograph on the *Genus Camellia* reclassifying Sealy’s work to include many newly described species. The formal international agreement on plant names is laid out in the International Code of Botanical Nomenclature, but the code does not take into consideration how personal preferences influence the division of families, genera, etc. This subjective effect produces two camps of taxonomist: the lumpers and the splitters. The lumpers prefer to group together a large number of species in each genus, or genera in families, and the splitters choose to divide genera among new families, and put species in new genera. Chang classifies *Camellia ptilophylla*, one of the newly planted camellias on campus, as a separate species but some authorities list it as a variety of *C. sinensis*.
Himalayas and China grows to five feet high and wide. The flower buds, covered with white silky hairs, form in late summer on the end of the branches and remain visible until blooming the following winter. Blooming for us in February, the flowers resemble dense, nodding, clusters of yellow narcissus-scented umbels. Rarely troubled by pest or disease (except for the scale on our plants now), Edgeworthia requires little maintenance once established. A member of the Thymelaeaceae Family, Edgeworthia represents a small genus of just three species closely related to Daphne, another fragrant, winter-blooming shrub. The genus gets it name from Michael Pakenham Edgeworth (1812-1881) of the East India Company’s Service, an amateur botanist who collected many new plants in India. A very high quality paper made from the bark of this plant provides a material used for the manufacturing of bank notes in Japan. Rice Paper Plant grows best in moist, well-drained, humus-rich, loamy soil and with dappled shade. Several Rice Paper Plants grow on campus along the diagonal sidewalk between Lane Library and Jenkins Hall.