Using Performance Assessments to Connect Fractions and Rational Expressions: Noyce Scholars as Mentors to Pre-Service Elementary Teachers

Joy W. Darley
Georgia Southern University, jdarley@georgiasouthern.edu

Michelle Cawthorn
Georgia Southern University, mcawthor@georgiasouthern.edu

Marlynn Griffin
Georgia Southern University, mgriffin@georgiasouthern.edu

Brian P. Koehler
Georgia Southern University, bkoehler@georgiasouthern.edu

James LoBue
Georgia Southern University, jlobue@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/math-sci-facpres

Part of the Mathematics Commons

Recommended Citation
https://digitalcommons.georgiasouthern.edu/math-sci-facpres/2

This presentation is brought to you for free and open access by the Mathematical Sciences, Department of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Mathematical Sciences Faculty Presentations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact digitalcommons@georgiasouthern.edu.
Using Performance Assessments to Connect Fractions and Rational Expressions:

Noyce Scholars as Mentors to Pre-Service Elementary Teachers

Joy W. Darley Georgia Southern University
Noyce scholars are not only being mentored, but they are also serving as mentors to pre-service elementary teachers.
\[\frac{5}{11}x \div \frac{1}{8}x = \frac{50}{11} \cdot \frac{8}{x} \cdot \frac{1}{x} = 2 \]
Since our Noyce scholars with mathematics degrees will be teaching algebra, it is important that they are fluent with the arithmetic to algebra connection. In addition, it is crucial that these mathematics majors become stakeholders in mathematics education at the elementary school level.
Benefits to SMART Scholars:

• SMART Scholars learn to evaluate pre-service teachers with their mathematics content knowledge and therefore strengthen their own knowledge.

• SMART Scholars gain strategies and resources needed to teach fractions in a way that leads to conceptual understanding.

• SMART Scholars become stakeholders in mathematics education at the elementary school level.
Benefits to Elementary Pre-service Teachers:

• Elementary pre-service teachers gain mathematics content knowledge & strategies that will provide a foundation so that their students are better able to connect arithmetic to algebra.
• Elementary pre-service teachers learn to use accurate communication concerning mathematics.
• Elementary pre-service teachers gain access to mathematics mentoring and support.
\[\frac{4}{5} \div 2 = \frac{4}{5} \cdot \frac{1}{2} \]
\[= \frac{4 \cdot 1}{5 \cdot 2} \]
\[= \frac{2}{5} \cdot \frac{2}{2} = \frac{1}{5} \]
Inputs for Learning Algebraic Properties

- Understanding Fractions As Numbers
- Understanding Variables As Numbers
- Fraction Properties
- Algebraic Properties
Conceptual Framework:

The number line is used as a unifying model for operations on whole numbers, fractions, and algebraic expressions.
Since our goal is for students to better understand variables, we need to be certain that our students understand numbers. Once the connection is made between the two, the students will be more confident using variables.
Numbers / Variables

Arithmetic

0 1.2 2.2 3.2

0 2 4 6

Algebra

0 X 2X 3X

0 1X 2X 3X
Numbers / Variables

Arithmetic

Algebra

-6 0 2 6
-(3.2) 3.2

-3X 0 X 3X
-(3X) 3X
Lesson 1

Definition of a Fraction
Definition.

Measurement:

\[\frac{a}{b} \] is \(a \) out of \(b \) equal parts in the interval \([0,1] \).

Sharing:

\[\frac{a}{b} \] is the size of the portion when \(a \) is divided into \(b \) equal parts.
Measurement Interpretation:

• Jack takes one candy bar and divides it into 3 equal parts and eats 2 of those parts. How much did Jack eat? (What if he eats 4 of those parts?)

• Jack takes X candy bars and divides them into 3 equal parts and eats 2 of those parts. How much did Jack eat? (What if he eats 4 of those parts?)
Measurement:

\[\frac{a}{b} \] is a out of b equal parts in the interval \([0,1]\).
Sharing Interpretation:

• If Jack has one candy bar and wants to divide it equally among his three friends, how much would each friend get?

• What if Jack has X candy bars and wants to divide them equally among his three friends, how much would each friend get?
Sharing:

\[
\frac{a}{b}
\]

is the size of the portion when \(a\) is divided into \(b\) equal parts.
Sharing Interpretation:

• If Jack has two candy bars and wants to divide them equally among his three friends, how much would each friend get?

• What if Jack has 2X candy bars and wants to divide them equally among his three friends, how much would each friend get?
Sharing:

\[\frac{a}{b} \] is the size of the portion when \(a \) is divided into \(b \) equal parts.
Algebra Number Line Instruction

A. Substitute \([0, x]\) in place of \([0, 1]\) in 1st fraction definition to locate \(\frac{3}{4} x\).

B. Use the 2nd fraction definition to locate \(\frac{3x}{4}\).
Lesson 2

Renaming Fractions
Fraction Tasks

– Ed is responsible for putting up signs on the side of a road **two-thirds** of a mile leading to the school carnival. The signs are to be spaced **one-sixth** mile apart from each other. How many signs will he put up?

– The camp’s water tank holds **six** gallons of water and **four** gallons are left. What fraction of the tank is full of water? Express this fraction in lowest terms.
Fraction Bar and Number Line Instruction

(a) Rename $\frac{2}{3}$ as a fraction having a denominator of 6.

\[
\frac{2}{3} = \frac{2 \cdot 2}{3 \cdot 2} = \frac{4}{6}
\]
(b) Simplify $\frac{4}{6}$

\[
\frac{4}{6} = \frac{2 \cdot 2}{3 \cdot 2} = \frac{2}{3}
\]
Algebra Instruction

Rename $\frac{2}{3}$ as a fraction having a denominator of $3x$.

$$\frac{2}{3} = \frac{2 \cdot x}{3 \cdot x} = \frac{2x}{3x}$$

Note: $x \neq 0$
Rename \(\frac{x}{3} \) as a fraction having a denominator of \(6x(x + y) \).

\[
\frac{x}{3} = \frac{x \cdot 2x(x + y)}{3 \cdot 2x(x + y)} = \frac{2x^2(x + y)}{6x(x + y)}
\]

Note: \(x \neq 0, x + y \neq 0 \)
Algebra Instruction

Simplify \(\frac{4x}{5x} \).

\[
\frac{4x}{5x} = \frac{4}{5}
\]

Note: \(x \neq 0 \)
Simplify \(\frac{6x-8}{9x-12} \).

\[
\frac{6x-8}{9x-12} = \frac{2(3x-4)}{3(3x-4)} = \frac{2}{3}
\]

Note: \(x \neq \frac{4}{3} \)
Lesson 3

Adding Fractions with Like Denominators
Fraction Tasks

• Albert mowed one-fifth of the lawn while Hung-Hsi mowed two-fifths. Together, what part did they mow?

• Bryan drove one-third of a mile and then drove two-thirds more. How far did he travel?
Fraction Bar and Number Line Instruction

\[\frac{1}{5} + \frac{2}{5} = \frac{1+2}{5} = \frac{3}{5} \]

\[\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c} \]
Algebra Instruction

\[
\frac{1}{x} + \frac{2}{x} = \frac{1+2}{x} = \frac{3}{x} \quad \text{Note: } x \neq 0
\]
Algebra Instruction

\[\frac{2x}{x-y} + \frac{x-3y}{x-y} = \frac{2x+x-3y}{x-y} = \]

\[\frac{3x-3y}{x-y} = \frac{3(x-y)}{x-y} = 3 \]

Note: \(x \neq y \)
Fraction Tasks

• Hilton has a board that is two and three-fourths feet long. How many pieces that are one-fourth foot long can he cut from this board?

• After expanding a recipe, Noelle discovers that she needs eleven-fourths sticks of butter. How much butter does she need? (Convert to a mixed number.)
Change $2\frac{3}{4}$ to an improper fraction.

\[
2\frac{3}{4} = 2 + \frac{3}{4} = \frac{2 \cdot 4}{4} + \frac{3}{4} = \frac{2 \cdot 4 + 3}{4} = \frac{11}{4}
\]
Algebra Instruction

Rename \(x \frac{y}{z} \) as an improper fraction.

\[
x \frac{y}{z} \quad \text{or} \quad x + \frac{y}{z} = \frac{xz}{z} + \frac{y}{z} = \frac{xz + y}{z}
\]
Lesson 4

Adding Fractions with Unlike Denominators
Fraction Tasks

• A local program has one-fourth hour of commercials and two-thirds hour of show time. How long is the entire show?

• Jack lives one-sixth of a mile due west from the Student Union. Bill lives two-thirds of a mile due east from the Student Union. How far does Bill live from Jack?
Fraction Bar and Number Line Instruction

\[
\frac{1}{4} + \frac{2}{3} = \frac{1 \cdot 3}{4 \cdot 3} + \frac{2 \cdot 4}{3 \cdot 4} = \frac{1 \cdot 3 + 2 \cdot 4}{12} = \frac{11}{12}
\]
Algebra Instruction

\[
\frac{3}{x} + \frac{5}{4y} = \frac{3 \cdot 4y}{x \cdot 4y} + \frac{5 \cdot x}{4y \cdot x} = \cdot
\]

\[
\frac{12y}{4xy} + \frac{5x}{4xy} = \frac{12y + 5x}{4xy}
\]
Lesson 5

Multiplying a Whole Number by a Fraction
Fraction Tasks

• Amy **triples** a recipe that normally takes **two-thirds** of a stick of butter. How much butter should she use?

• A recipe for brownies calls for **three-fourths** cup of sugar. Peaches wants to **double** the recipe. How much sugar does she need?
Fraction Bar and Number Line Instruction

(a) \(\frac{3 \cdot 2}{3} = \frac{3 \cdot 2}{3} = 2 \)
Fraction Bar and Number Line

Instruction

(b) \(\frac{2}{3} \cdot 3 = \frac{2 \cdot 3}{3} = 2 \)

\(\frac{a}{c} \cdot c = \frac{a \cdot c}{c} = a \)

\(\frac{2}{3} \) of a group of 3

\(\frac{1}{3} \) of 3 is 1

\(\frac{2}{3} \) of 3 is 2

\(\frac{3}{3} \) of 3 is 3
Algebra Instruction

\[
\frac{5}{x} \cdot \frac{x}{x} = \frac{5x}{x} = 5 \quad \text{Note: } x \neq 0
\]

\[
5 \cdot \frac{2x+4}{5} = \frac{5(2x+4)}{5} = 2x+4
\]

\[
3 \cdot \frac{x}{4} = \frac{3x}{4}
\]
Lesson 6

Multiplying a Fraction by a Fraction
Fraction Tasks

• Marcia found two-thirds of a sub sandwich on the table. She decides to eat one-half of it. How much of the original sandwich did she eat?

• John lives one-half of a mile from his school. When he has walked two-third of the distance, how far has he walked?
Fraction Bar and Number Line Instruction

(a) \(\frac{1}{2} \cdot \frac{2}{3} = \frac{1 \cdot 2}{2 \cdot 3} = \frac{1}{3} \)
Fraction Bar and Number Line Instruction

(b) \[\frac{2}{3} \cdot \frac{1}{2} = \frac{2 \cdot 1}{3 \cdot 2} = \frac{1}{3} \]

Number Line:

- 0
- \(\frac{1}{3} \)
- \(\frac{1}{2} \)
- \(\frac{1}{1} \)
- \(\frac{2}{2} \)
- \(\frac{3}{2} \)
- \(\frac{6}{2} \)

Fraction Boxes:

- \(\frac{1}{3} \) of \(\frac{1}{2} \)
- \(\frac{2}{3} \) of \(\frac{1}{2} \)
- \(\frac{3}{3} \) of \(\frac{1}{2} \)
Algebra Instruction

\[\frac{2x \cdot 3}{5y \cdot 4} = \frac{2x \cdot 3}{5y \cdot 4} = \frac{2 \cdot 3 \cdot x}{2 \cdot 2 \cdot 5 \cdot y} = \frac{3x}{10y} \]

\[\frac{5x + 2}{3} \cdot \frac{1}{5x + 2} = \frac{(5x + 2)1}{3(5x + 2)} = \frac{1}{3} \]
Lesson 7

Dividing Fractions
Fraction Tasks

• Blake and David are looking at four-fifths of a pizza. How much should each boy get if they cut the pizza in two equal slices?

• Josh wants to make one-fourth pound hamburger patties. How many of these can he make from 1 pound of hamburger meat?

• A certain track is two-thirds of a mile. How many times will Julie need to run this distance if she needs to run 2 miles?
Fraction Bar and Number Line Instruction

(a) \[\frac{4}{5} \div 2 = \frac{4}{5} \div \frac{2}{1} = \frac{4}{5} \cdot \frac{1}{2} = \frac{4 \cdot 1}{5 \cdot 2} = \frac{2 \cdot 2 \cdot 1}{5 \cdot 2} = \frac{2}{5} \]
(b) $1 \div \frac{1}{4} = \frac{1}{1} \div \frac{1}{4} = \frac{1}{1} \cdot 4 = 4$
Fraction Bar and Number Line Instruction

(c) \[2 ÷ \frac{2}{3} = \frac{2}{1} ÷ \frac{2}{3} = \frac{2}{1} \cdot \frac{3}{2} = \frac{2 \cdot 3}{1 \cdot 2} = 3\]
Algebra Instruction

\[
\frac{6x}{5} \div 3 = \frac{6x}{5} \div \frac{3}{1} = \frac{6x \cdot 1}{5 \div 3} = \cdot
\]

\[
\frac{2 \cdot 3 \cdot x}{3 \cdot 5} = \frac{2x}{5}
\]
Algebra Instruction

\[
2 \div \frac{2}{5x} = \frac{2}{1} \div \frac{2}{5x} = \frac{2}{1} \cdot \frac{5x}{2} =
\]

\[
\frac{2 \cdot 5x}{1 \cdot 2} = \frac{5x}{1} = 5x
\]
Actual Performance Assessment Tasks for Establishing the Arithmetic to Algebra Connection
Fraction Definition: Measurement

<table>
<thead>
<tr>
<th>Pair #1</th>
<th>Pair #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{4}{5}$ and $\frac{6}{5}$</td>
<td>$\frac{5}{6}$ and $\frac{7}{6}$</td>
</tr>
</tbody>
</table>
Fraction Definition: Sharing

<table>
<thead>
<tr>
<th>Pair #1</th>
<th>Pair #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{3}{4})</td>
<td>(\frac{2}{3})</td>
</tr>
</tbody>
</table>
Simplify. Show algorithm, fraction bars and explain.

<table>
<thead>
<tr>
<th>Pair #1</th>
<th>Pair #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{10}{12}$</td>
<td>$\frac{8}{12}$</td>
</tr>
</tbody>
</table>
Add.
Show algorithm & fraction bars.

<table>
<thead>
<tr>
<th>Pair #1</th>
<th>Pair #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{5} + \frac{2}{5}) and (\frac{x}{z} + \frac{y}{z})</td>
<td>(\frac{2}{5} + \frac{3}{5}) and (\frac{x}{z} + \frac{y}{z})</td>
</tr>
</tbody>
</table>
Show all steps in order to change each mixed number into its equivalent improper fraction. Show fraction bars.

<table>
<thead>
<tr>
<th>Pair #1</th>
<th>Pair #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 \frac{3}{4}$</td>
<td>$2 \frac{1}{3}$</td>
</tr>
<tr>
<td>and $X \frac{y}{z}$</td>
<td>and $A \frac{b}{c}$</td>
</tr>
</tbody>
</table>
Multiply.
Show algorithm & fraction bars.

<table>
<thead>
<tr>
<th>Pair #1</th>
<th>Pair #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 \cdot \frac{2}{3}</td>
<td>4 \cdot \frac{3}{4}</td>
</tr>
</tbody>
</table>
Multiply.
Show number line.

<table>
<thead>
<tr>
<th>Pair #1</th>
<th>Pair #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{2}{3} \cdot 3)</td>
<td>(\frac{3}{4} \cdot 4)</td>
</tr>
</tbody>
</table>
Multiply.
Show algorithm & number line.

<table>
<thead>
<tr>
<th>Pair #1</th>
<th>Pair #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 2</td>
<td>2 1 1</td>
</tr>
<tr>
<td>4 3 3</td>
<td>3 4 4</td>
</tr>
</tbody>
</table>
Divide.
Show algorithm & number line.

<table>
<thead>
<tr>
<th>Pair #1</th>
<th>Pair #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{8}{5} \div 4)</td>
<td>(\frac{6}{5} \div 3)</td>
</tr>
</tbody>
</table>
Divide.
Show algorithm & fraction bars.

<table>
<thead>
<tr>
<th>Pair #1</th>
<th>Pair #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3 \div \frac{3}{4}$</td>
<td>$2 \div \frac{2}{3}$</td>
</tr>
</tbody>
</table>
Contrast. Model each using fraction bars & number line.

<table>
<thead>
<tr>
<th>Pair #1</th>
<th>Pair #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 \div 3) vs. (2 \div \frac{1}{3})</td>
<td>(3 \div 4) vs. (3 \div \frac{1}{4})</td>
</tr>
</tbody>
</table>
Science & Math Achievement through Research and Teaching

Start Date: January 1, 2009

Michelle Cawthorn,
Joy Darley
Marlynn Griffin,
Brian Koehler,
James M. LoBue

Georgia Southern University, Department of Chemistry,
Statesboro, Georgia 30460