
Georgia Southern University 

Digital Commons@Georgia Southern 

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of 

Fall 2012 

Integer Solutions to Optimization Problems and Modular 
Sequences of Nexus Numbers 
Jeremy T. Davis 

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd 

 Part of the Mathematics Commons 

Recommended Citation 
Davis, Jeremy T., "Integer Solutions to Optimization Problems and Modular Sequences of 
Nexus Numbers" (2012). Electronic Theses and Dissertations. 2. 
https://digitalcommons.georgiasouthern.edu/etd/2 

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack 
N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in 
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia 
Southern. For more information, please contact digitalcommons@georgiasouthern.edu. 

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/2?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


INTEGER SOLUTIONS TO OPTIMIZATION PROBLEMS AND

MODULAR SEQUENCES OF NEXUS NUMBERS

by

JEREMY T. DAVIS

(Under the Direction of Colton Magnant)

ABSTRACT

In this thesis, we examine the use of integers through two ideas. As mathematics

teachers, we prefer students not use calculators on assessments. In order to require

this, students compute the problems by hand. We take a look at the classic Calculus I

optimization box problem while restricting values to integers. In addition, sticking

with the integer theme, we take a new look at the nexus numbers. Nexus numbers

are extensions of the hex and rhombic dodecahedral numbers. We put these numbers

into a sequence, and through a few computations of modular arithmetic, we analyze

the sequences and their patterns based upon the different moduli. These patterns

are specific to whether the power is even or odd. Within each power, there are other

properties to this set of sequences. Depending on modulus, there are some sequences

that stand out more than others.
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CHAPTER 1

BOXES, PANS AND CANS; A DIOPHANTINE APPROACH TO

OPTIMIZATION

Vincent Coll 1, Jeremy Davis2, Martin Hall2, Colton Magnant2, Hua Wang2

“God made the integers, all else is the work of man.”

- Leopold Kronecker

1.1 Introduction

A Diophantine equation is an indeterminate polynomial equation in which only inte-

ger (and sometimes, rational) solutions are considered. Equations approached from

this point of view are usually seen in a course on number theory, where a favorite

introductory Diophantine problem involves a box which contains spiders (which have

8 legs) and beetles (which have 6 legs). If we know that the box contains 46 legs, how

many of each creature are there? A little algebra establishes that there are only two

possible configurations: 2 spiders and 5 beetles or 5 spiders and 1 beetle. However,

many Diophantine equations do not admit integer solutions. Moreover, it has been

shown that there is no deterministic algorithm which can be used to show whether

an arbitrary non-linear Diophantine equation even has a solution. Indeed, this clas-

sic result in logic and computability was established by Matiyasevich in 1970 and it

negatively resolved the long standing 10th problem of Hilbert which asked if such an

algorithm existed (see [3] and [4]).

History’s most celebrated Diophantine equation is the subject of the Last The-

orem of Fermat which he famously penned (but did not prove) in the margin of his

notes in 1637. The theorem was finally established in 1994 by Andrew Wiles, fully

1Department of Mathematics, Lehigh University, Bethlehem PA, USA.
2Department of Mathematical Sciences, Georgia Southern University, Statesboro GA, USA.
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358 years after Fermat insightfully said that it was true (see [4]). The theorem states

that there are no integer solutions to the equation xn+yn = zn, for n ≥ 3. Of course,

if n = 2, there are infinitely many solutions which are called Pythagorean triples (e.g.,

(3,4,5) and (5,12,13)) (see [7] and [9]).

Problem 0. Create an open-top box from a rectangular sheet of cardboard by cutting

squares out of each corner and folding up the sides. If the sheet is a units by b units,

what is the height x of such a box with maximum volume? See Figure 1.1.

Figure 1.1: Rectangular box.
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In creating a test for a first semester calculus course, the Dr. Magnant was

challenged to find nice values of a and b in Problem 1 above. This led to the following

problem.

Problem 1. Classify the pairs of integers a and b that yield an integer solution x in

Problem 0.

We can generalize Problem 1 by relaxing the condition that x is an integer. This

leads to the following problem.

Problem 2. Classify the pairs of integers a and b that yield an optimized integer

volume in Problem 0 where x need not be an integer.

At the outset, we remark there is no a priori reason to expect that there are

Diophantine solutions to either Problem 2 or 3. But there are! See Table 1.1 for a

small sample of solutions.

a b x V

6 6 1 16

5 8 1 18

12 12 2 128

10 16 2 144

9 24 2 200

18 18 3 432

a b x V

3 3 1
2

2

9 9 3
2

54

15 15 5
2

250

21 21 7
2

686

27 27 9
2

1458

21 45 9
2

1944

Table 1.1: Solutions to Problem 1 (left) and Problem 2 (right).

In Section 1.2, we solve Problem 1 and Problem 2 by proving Theorems 1.2.1

and 1.2.2, respectively, and so establish the general formulae for a, b, and x from

which the values in Table 1 are constructed. In Section 1.3, we discuss a similar
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optimization problem where the starting sheet of cardboard is in the shape of a

triangle. Mirroring the rectangular case, Theorem 1.3.2 provides a classification of

the possible choices for side lengths which yield an optimized integer solutions to the

analogue of Problem 1. We find that similar optimization problems for cardboard

sheets bounded by arbitrary n-gons, n > 4 are doable but the calculations quickly get

out of hand. However, by requiring the n-gons be regular, we find that if solutions

exist for n = 3, 4 and 6questions about. We establish this fact in Section 1.4, but leave

the classification theorem for n = 6 as an exercise. We also suggest (but do not detail)

that an analogue of Theorem 1.2.2 exists for the triangular and hexagonal cases. But

any such characterization will likely be dependent on the angle. In Section 1.5, we

move from boxes to right circular cylinders (“pans”) and consider the problem of

forming an open-top circular pan of maximum volume which can be made from a

sheet of metal in the shape of a regular n-gon. Of course, since π is involved, this

will never yield an integer volume but we classify the number of sides n and integer

side lengths a such that the resulting maximum volume is an integer multiple of π.

We show that a sufficient condition to solve the optimization problem is that n = 4.

We provide some evidence to suggest that this is also a necessary condition. Finally,

in Section 1.6, we transition to constrained optimization by considering the problem

of making a cylindrical can (a pan with a lid) with a fixed volume that minimizes

surface area. Here, the formula for the volume of the can contains an unavoidable

appearance of 3
√
π, so, as in the previous section, we put a Diophantine spin on this

problem by finding rational functions of 3
√
π which yield a minimized integer value

for the surface area.
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1.2 Rectangular Boxes

Given an integer x, we say that a set of two integers {a, b} is a possible pair for x if

the solution to Problem 2 with inputs a and b is x. See Figure 1.2.

Figure 1.2: Rectangular box construction

The following Theorem resolves Problem 1.

Theorem 1.2.1. Let x ≥ 1 be an integer and let pn1

1 pn2

2 · · · pnk

k be the prime factor-

ization of 2x. Then there are

(2n1 + 1)(2n2 + 1) · · · (2nk + 1) + 1

2

possible pairs for x. Furthermore, for an integer x, all possible pairs for x are con-

structed by choosing a′ and b′ so that a′b′ = 4x2 and then setting a = a′ + 4x and

b = b′ + 4x.

Proof. For a given pair of integers a and b, the solution to Problem 1 begins with

differentiating (b− 2x)(a− 2x)x with respect to x and setting it equal to zero. Thus,
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our problem is concerned with finding integer solutions to

ab− 4ax− 4bx+ 12x2 = 0.

Factoring this yields

(a− 4x)(b− 4x)− 4x2 = 0.

Setting a′ = a − 4x and b′ = b − 4x, we see that a′b′ = 4x2. Given a value of x,

the problem has been reduced to simply finding two integers a′ and b′ whose product

is 4x2. Since pn1

1 pn2

2 · · · pnk

k is the prime factorization of 2x, there must be a total

of (2n1 + 1)(2n2 + 1) · · · (2nk + 1) choices for a′ and thus, as many choices for a.

Since each corresponding value of b′ is uniquely determined by the choice of a′ and

(2n1 + 1)(2n2 + 1) · · · (2nk + 1) is odd, we get a total of

(2n1 + 1)(2n2 + 1) · · · (2nk + 1) + 1

2

choices for a′ and b′. Note that the additional of one comes from the symmetric choice

of a′ = b′.

If we relax the restriction that all dimensions of the optimal box must be integers

but maintain integrality of the optimal volume, we get the following result which

resolves Problem 2.

Theorem 1.2.2. Let a and b be integers such that the maximum volume in Problem 0

is an integer. Then the height x is either an integer or a rational number which, when

written in reduced form, has denominator 2. Furthermore, for such a choice of x, all

possible pairs for x are constructed by choosing a′ and b′ so that a′b′ = 4x2 and then

setting a = a′ + 4x and b = b′ + 4x.

Proof. By Theorem 1.2.1, we may assume x is not an integer. We will first show that

x must be a rational number. For fixed values of x, a and b, the volume of the box is
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given by

V (x) = 4x3 − (2a+ 2b)x2 + abx.

Differentiating this with respect to x and setting it equal to zero, we get

x =
(a+ b)±

√
a2 + b2 − ab

6
.

Plugging this value of x into the V (x) above and assuming the result is an integer,

we get that (a2 + b2 − ab)3/2 must be an integer. This implies that a2 + b2 − ab must

be a perfect square. Then, in the choice of x above, x must be a rational number.

Setting x = p
q
where p and q are integers p

q
is in lowest terms. Assuming that x is not

an integer, we know q ≥ 2 and we intend to show that q = 2. From the assumption

that the resulting volume is an integer c, we get

ab− 2ap

q
− 2bp

q
+

4p2

q2
=

cq

p
. (1.1)

Setting V ′(p
q
) = 0, we get

ab− 4ap

q
− 4bp

q
+

12p2

q2
= 0. (1.2)

Subtracting twice Equation 1.1 from Equation 1.2, we get

−ab+
4p2

q2
=

−2cq

p

or

q2(−2cq + pab) = 4p3.

Since the greatest common factor of q and p is 1, we must have q2|4 which means

q = 2, completing the proof.

Finally, note that since 2x is always an integer, the same classification of possible

pairs a and b for a given value of x holds.
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1.3 Triangular Boxes

In this section, we consider the same problem as in Section 1.2 except we begin with

a triangular sheet of cardboard instead of a rectangular sheet. More specifically, we

have the following problem.

Problem 3. Given a sheet of cardboard in the shape of a triangle with sides of integer

lengths a, b and c, find the maximum volume that can be created by cutting quadri-

laterals from the corners and folding (parallel to the edges) up the sides to make an

open-top triangular box. See Figure 1.3.

Figure 1.3: Triangular box construction

In order to discuss triangular boxes, we first recall a useful formula for computing

the area of a triangle.

Theorem 1.3.1 (Heron’s Formula [5]). The area of a triangle with sides of length

a, b and c is given by

A =
1

4

√

(a+ b− c)(a− b+ c)(−a+ b+ c)(a+ b+ c).

A complete classification of integers a, b and c yielding integer solutions to Prob-

lem 3 is given by the following result.
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Theorem 1.3.2. Integers a, b and c produce an integer solution for the volume in

Problem 3 if and only if 54|(a+ b− c)(a− b+ c)(−a+ b+ c).

Proof. Consider a triangle with sides of length a, b and c. Let d be the distance from

each side to the incenter (see Figure 1.4) of the triangle so if A is the area of the

triangle, we get A = 1
2
d(a+ b+ c) or

d =
2A

a+ b+ c
.

Figure 1.4: The incenter of a triangle

Let x be the distance from each side where we would like to fold (cutting off the

appropriate piece from each corner as in Figure 1.3). Then the volume is given by

V (x) =

(

d− x

x

)2

Ax.

Taking the derivative and setting it equal to zero, we see that V ′(x) = A
d2
(3x −

d)(x−d) so since x = d is a nonsensical solution, we conclude that x = d
3
must produce

the maximum volume (a simple application of the second derivative test confirms this

conclusion). Thus, the optimal volume is given by

Vopt =

(

d− d
3

d

)2

A
d

3
=

4Ad

27
=

8A2

27(a+ b+ c)
.

By Theorem 1.3.1, we can replace A and reduce this to

Vopt =
(a+ b− c)(a− b+ c)(−a+ b+ c)

54
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which is an integer precisely when

54|(a+ b− c)(a− b+ c)(−a+ b+ c)

as claimed.

In particular, if a = b = c then this must be a multiple of 6 as seen in the

following table containing the smallest values of a, b and c that are all equal.

a b c x V

6 6 6 4
9
√
3

4

12 12 12 8
9
√
3

32

18 18 18 12
9
√
3

108

24 24 24 16
9
√
3

256

30 30 30 20
9
√
3

500

36 36 36 24
9
√
3

864

42 42 42 28
9
√
3

1372

Table 1.2: Solutions for Problem 3

1.4 Regular n-gon Boxes

In this section, we study analogues of Problems 1 and 3 for n-gonal shaped cardboard

sheets. We find that imposing regularity condition on the bounding polygons allows

us to produce necessary (and possibly, sufficient) conditions for the existence of Dio-

phantine solutions. We begin with a fact from elementary plane geometry. Recall

that the apothem length of a regular n-gon is the distance from the center of the

n-gon to any edge.

Fact 1. The area of an n-gon is 1
2
Pa where P is the perimeter and a is the apothem

length.
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Theorem 1.4.1. The maximum volume of a regular n-gon box with side length s is

ns3 tan2(π/n)
54

.

Proof. Given s and n, construct a box from an s-regular n-gon by folding parallel

to each of the n edges to create the sides of a box of height x. At each corner, we

remove a portion of excess material. Let y be the length removed from each edge at

each corner, thereby reducing the length of the edge from s to s′ = s − 2y. Using

basic geometry, we see y = x
tan(α)

where α = π
n
as seen in Figure 1.5.

Figure 1.5: A corner of an n-gon.

Using Fact 1 to find the area of the base, our total volume is

V =
1

2
n(s− 2y)

(

tan(α)(s− 2y)

2

)

x

=
nx

4 tan(α)
(s tan(α)− 2x)2.

To find the maximum volume in terms of x, we differentiate V with respect to x.

This yields

dV

dx
=

n

tan(α)
(s tan(α)− 2x)2 +

nx

tan(α)
(s tan(α)− 2x)

=
1

4
n(s(s tan(α)− 8x) + 12x2 cot(α)).
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Setting this derivative equal to zero and solving for x gives

x =
tan(α)

(

2ns±
√
n2s2

)

6n
=

tan(α)(2ns± ns)

6n

so x can be either s tan(α)
2

or s tan(α)
6

.

Substituting tan(α)s
2

into the volume equation yields a volume of zero so we con-

clude x = tan(α)s
6

. Plugging this into the volume equation, we are left with our desired

solution of

V =
ns3 tan2(α)

54
.

n s α V

2 3 π
3

3

9 2 π
3

4

4 3 π
3

6

6 3 π
3

9

n s α V

2 3 π
4

1

4 3 π
4

2

6 3 π
4

3

2 6 π
4

8

n s α V

6 3 π
6

1

3 6 π
6

12

2 9 π
6

27

9 6 π
6

36

Table 1.3: Solutions to Theorem 5 α = π
3
, α = π

4
, and α = π

6

Our question now reduces to finding those angles whose tangent value squared

is rational. Note that if one trigonometric function squared is rational then so too

are the others. We trivially observe that a sufficient condition for this to happen is

that the original trigonometric function is rational. The values for which the latter

occurs are sparse, well-known, and first introduced into the literature by Olmsted in

a Monthly article [6] in 1945 as follows:

Theorem 1.4.2. If θ is rational in degree, then the only possible rational values of

the trigonometric functions are: sin θ, cos θ = 0, ±1
2
, ±1; sec θ, csc θ = ±1, ±2; tan θ,

cot θ = 0, ±1.
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In our case, this means that n = 3, 4 and 6 will solve the optimized integer volume

problem. However, this does not preclude that an irrational angle may the property

that its six trigonometric functions have rational squares. Indeed, the dihedral angle

α (≈ 70◦31′44′′) of the regular tetrahedron is such that tan2 α = 8. In 1993, Conway

et al [2], characterized all such angles in their article entitled: On angles whose

squared trigonometric functions are rational. They called these angles purely geotetic

and found that the set of purely geotetic angles generates a vector space over Q.

The study of this space is beyond the scope of our investigation, but we do ask the

following question:

Question 1. Are there any purely geotetic angles of the form π
n
, for n 6= 3, 4 or 6?

We close this section with an Exercise.

Exercise: For n = 6, solve the analogue of Problem 1. See Figure 1.6.

Figure 1.6: Hexagonal box construction



14

1.5 Pie Pan

When attempting to create a cyllindrical pan out of a polygonal sheet of metal with

integer sides by folding up an integer height around the side, the resulting volume

will necessarily be a multiple of π. This, we consider conditions that imply the result

is an integer multiple of π.

Problem 4. Suppose we start with a regular polygon with n sides each of length a and

would like to create a pie pan of maximum volume by taking a circle in the interior of

the polygon and folding up the sides into a cylindrical pan. See Figure 1.7. Classify

the integers n and a such that the resulting volume is an integer multiple of π.

Figure 1.7: Pan construction.

Theorem 1.5.1. If n = 4 and a3 is divisible by 54, then the resulting volume in

Problem 4 is an integer multiple of π.

Proof. The radius of a regular polygon inscribed around a circle with n sides of length

a is

r′′ =
a

2 cos
(

π
n

) .
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This means the radius of the inscribed circle is

r′ =

√

a2

4 cos2
(

π
n

) − a2

4
=

a

2

√

1− cos2
(

π
n

)

cos2
(

π
n

) =
a

2
tan
(π

n

)

.

With r′′ and r′ defined we much check to make sure that

limn→∞r′′ = r′

Which it has to because as n goes to infinity the polygon becomes a circle with interior

radius r′ and exterior radius r′′. Since we have a circle, these two radii are the same

which was required, so we continue. Further, we define the volume of the total pie

pan as V = (r′ − h)2hπ. Using this we find the height which maximize the volume.

dV

dh
= πr′2 − 4r′πh+ 3h2π = 0

Solving for h:

h =
4r′ ±

√
16r′π2 − 12π2r′2

6π
= r′

2 + π

3π

This has two solutions, but subtracting the root yields a height of 0 which doesn’t

make physical sense, so we add giving our final result. Substituting our new expression

for h into our original volume equation gives

V = r′3(1− 2 + π

3π
)2(

2 + π

3π
)π.

We further state that

lim
n→∞

dV

dn
= 0

Redefining c = 2+π
3π

we have

dV

dn
=

−(3π2a3c tan2
(

π
n

)

sec2
(

π
n

)

(c− 1)2)

8n2

since everything checks we are done.

By Theorem 1.4.2, if n = 4, cot3(π/n) is rational. This means that V is an

integer multiple of π if n = 4 and a3 is divisible by 54.
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a n r′ (r′)3

6 4 3 27

12 4 6 216

18 4 9 729

24 4 12 1728

Table 1.4: Solutions for Theorem 7

1.6 Cans

Another very standard calculus problem is making a cylindrical can with a fixed vol-

ume that minimizes surface area. We consider a slight generalization of this problem

by considering not only surface area but the total cost of material where the cost

of the material user for the top and bottom may be different from the cost of the

material used for the side.

Problem 5. Suppose we have a fixed volume V , a cost “a” per square unit of top and

bottom material and a cost “b” per square unit of side material. Find the dimensions

of a cylindrical can with an open top with volume V which has minimum cost.

Since the value of the radius in the solution to this problem contains
√
π, there

is no hope that integer choices of a, b and V would yield an integer answer. Thus, we

consider the problem of finding integers a, b and V such that the resulting cost is an

integer multiple of
√
π.

Theorem 1.6.1. The minimum cost solution to Problem 5 is an integer multiple of

√
π if and only if abV is a perfect square.

Proof. Let r and h be the radius and height of the constructed can so the volume is
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V = πr2h and the cost is C(r, h) = 2πr2a+ 2πrhb. This means h = V
πr2

so

C(r) = 2πr2a+
2bV

r2
.

Taking a derivative with respect to r, we get

C ′(r) = 4πra− 4bV

r3

and setting this equal to zero, we find that

r =
4

√

bV

πa
.

Plugging this value of r back into C(r), we find that the minimum cost is given by

Cmin = 4
√
πabV

which is an integer multiple of
√
π if and only if abV is a perfect square.



CHAPTER 2

MODULAR SEQUENCES OF NEXUS NUMBERS

2.1 Introduction

We all remember originally learning our numbers. Your parent put items in a con-

tainer and you pulled one out. After the first one, she would say, one, and you would

repeat. This would continue for two, three, four, and so on. Eventually, we would

take initiative and count on our own. Soon following counting, the teacher asks the

child, What number comes next in the sequence? The child develops the ability to

finish the sequence. By the time the student reaches high school, the student is able

to find a recursive formula for a sequence. Now some play games with this by creating

a recursive formula. They list the first few terms and trade with a partner. It is the

partner′s job to figure out the formula. Once a fascination with number sequences

begins, one discovers integer patterns everywhere.

In the fall of 2008, a student entered the tutoring center for help. I forget the

nature of the problem, but I do remember making a t-table for x6. From there, I

continued to play with the numbers by subtracting a value by the one before it. I

began to notice a pattern in the differences. Each difference was congruent to 1 mod

6. Due to my enrollment in Number Theory at the time, this sparked an interest, so

I began to research and grew in love with integers.

Could you imagine watching a football game on a Fall Saturday and the lines on

the field are at random yard lines? In John Conway′s book (see [1]), he uses figurate

numbers to examine Geometry in the performance of Arithmetic and Algebraic ideas.

A figurate number represents a geometric shape made from equidistant points. See

Figure 2.1.

Within the figurate numbers, there are unique sets of numbers based upon the

sequence (i+ 1)n − in. The first four values of n are easier to visualize. When n = 1,
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Figure 2.1: Figurate Number

we have (i + 1)1 − i1 = i + 1 − i = 1, so since each term is 1, we call this the unit

sequence. For n = 2, we create a list of all the odd numbers since (i+1)2−i2 = 2i+1.

Moving to the second dimension we are able to visualize a honeycomb pattern, for

when n = 3 the generating function is 3i2 + 3i+ 1. This creation of hexagons begins

with a singular hexagon (i = 0). When i increases, a new layer of hexagons is added

around the existing image. (see Figure 2.2). Thus, this sequence is referred to as the

hex numbers.

Figure 2.2: Hex Number

In the next dimension, n = 4, the same layering exists. Instead of hexagons

though, the figure uses a rhombic dodecahedral. In the hex numbers, when i increases,

each side adds a new hexagon, but in the rhombic dodecahedral numbers, when

i increases, each face adds a new rhombic dodecahedral. As n continues to grow,

geometric representation is no longer applicable because. These sequences are referred
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to as the nexus numbers. After my findings in the tutoring center involving nexus

numbers, I decided to investigate a general idea for the nexus numbers and different

moduli.

2.2 What to look for?

As mentioned, previous observations showed every odd-powered nexus number is

congruent to 1 mod 6. The research continued by creating tables of nexus numbers

calculated by different modulos. (These tables can be found in the Appendix.) For

each modulo, k, the sequence repeats at the k+1 term. If the power is odd, then the

sequences are palindromic, but if the power is even, then symmetrical term’s sum is

k. See Appendix for the tables.

2.3 Definitions

The hex numbers are defined as 1 + 3x+ 3x2 = (x+ 1)3 − x3. Likewise, the rhombic

dodecahedral numbers are defined as 1+4x+6x2+4x3 = (x+1)4−x4. Since both hex

and rhombic dodecahedral numbers can be represented geometrically, we only work

with the positive integers. Thus, each term of the modular, nexus number sequence

is defined as:

Definition 2.3.1. Let ai = [(i+ 1)n − in] mod k for all i ∈ Z+ and 0 ≤ i ≤ k .

Also, call the terms ai and ak−i−1 symmetrical.

2.4 Theorems

We begin by examining the sequences where n is odd. These sequences are palin-

dromic, so the symmetrical terms are congruent.

Theorem 2.4.1. If n is odd, then ai − ak−i−1 = 0.
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Proof. Assume n is odd. Then

ai − ak−i−1 = [(i+ 1)n − in] mod k − [(k − i)n − (k − i− 1)n] mod k.

Since ai and ak−i−1 are both defined to be between 0 and k−1, if ai−ak−i−1 ≡ 0

mod k, then ai − ak−i−1 = 0. This means we may consider the quantity

(ai − ak−i−1) mod k = [(i+ 1)n − in − (k − i)n + (k − i− 1)n] mod k

=

[

(i+ 1)n − in −
n
∑

w=0

(

n

w

)

(k)w(i)n−w(−1)n−w

+
n
∑

w=0

(

n

w

)

(k)w(i+ 1)n−w(−1)n−w

]

mod k.

With the assumption that n is odd, the first term in each sequence is negative. This

means we can pull out the first terms to get

(ai − ak−i−1) mod k =

[

(i+ 1)n − in + in −
n
∑

w=1

(

n

w

)

(k)w(i)n−w(−1)n−w

−(i+ 1)n +
n
∑

w=1

(

n

w

)

(k)w(i+ 1)n−w(−1)n−w

]

mod k

=

[

−
n
∑

w=1

(

n

w

)

(k)w(i)n−w(−1)n−w

+
n
∑

w=1

(

n

w

)

(k)w(i+ 1)n−w(−1)n−w

]

mod k

= 0

as desired since each term is a multiple of k.

As in the previous theorem, the sequences where n is even also share a unique

characteristic. In this case each pair of symmetrical terms either sum to k or 0.

Theorem 2.4.2. If n is even, then ai + ak−i−1 = k, unless ai = ak−i−1 = 0.
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Proof. This proof is very similar in nature to the proof of Theorem 2.4.1 above.

Assume n is even. Then

ai + ak−i−1 = [(i+ 1)n − in] mod k + [(k − i)n − (k − i− 1)n] mod k.

Since ai and ak−i−1 are defined to be between 0 and k − 1, if they sum to 0

mod k, then either they are both zero or their sum is k. This means we may consider

the quantity

(ai + ak−i−1) mod k = [(i+ 1)n − in + (k − i)n − (k − i− 1)n] mod k

=

[

(i+ 1)n − in +
n
∑

w=0

(

n

w

)

(k)w(i)n−w(−1)n−w

−
n
∑

w=0

(

n

w

)

(k)w(i+ 1)n−w(−1)n−w

]

mod k

With the assumption that n is even, the first term in each sequence is positive. This

means we can pull out the first terms to get

(ai + ak−i−1) mod k =

[

(i+ 1)n − in + in +
n
∑

w=1

(

n

w

)

(k)w(i)n−w(−1)n−w

−(i+ 1)n −
n
∑

w=1

(

n

w

)

(k)w(i+ 1)n−w(−1)n−w

]

mod k

=

[

n
∑

w=1

(

n

w

)

(k)w(i)n−w(−1)n−w

−
n
∑

w=1

(

n

w

)

(k)w(i+ 1)n−w(−1)n−w

]

mod k

= 0,

as desired since each term is a multiple of k.

While analyzing the tables in the appendix, one may notice the columns where

the ai = 1 for all i. This occurs multiple times for the tables where n is odd, but it

only occurs when k = 2 where n is even. The explanation is in the following result.
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Theorem 2.4.3. If n is even, then k = 2 is the only sequence such that ai = 1 for

all i.

Proof. Since n is even, we know ai + ak−i−1 = k, unless ai = ak−i−1 = 0. Also, each

a0 = 1, so ak−i−1 6= 1 for k ≥ 3. Therefore, the sequence where ai + ak−i−1 = k is

k = 2.

2.5 Conjectures

As proven in Theorem 2.3.2, we see that k = 2 is the only sequence where ai = 1 for

all i when n is even. But, what about when n is odd? There are multiple sequences

where n is odd such that a− i = 1 for all i. The following conjectures provide further

thought for research on these sequences.

Conjecture 2.5.1. If k is a prime factor of 2n − 2 for k ≤ n, then ai = 1 mod k

for all i.

The thought process is according to the binomial coefficients. Note, the
(

n
0

)

term

and the
(

n
n

)

term equal one. The
(

n
0

)

term is eliminated by the definition of ai, but

the
(

n
n

)

term remains. This 1 is what we need though for our 1 mod k. Therefore, k

divides
(

n
1

)

+ · · ·+
(

n
n−1

)

.

Conjecture 2.5.2. If a, b, and c be all the prime factors of 2n − 2, then all possible

products without repetition of a, b, and c are also k’s where ai = 1 for all i.

For example, consider n = 7. So, 27 − 2 = 126 = 2 · 32 · 7. Note, when

k = 2, 3, 6, 7, 14, 21, 42 ai = 1 for all i, but when k = 18 this is not true. Even though

18 is a factor of 126, 18 = 2 · 32. Something about squaring the prime factor does not

allow ai = 1 for all i.
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Appendix A

NEXUS NUMBER SEQUENCE TABLE

The following are tables which represent the sequences for multiple k for each n.
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