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Abstract

In this note, we provide a sharp upper bound on the rainbow connection number of
tournaments of diameter 2. For a tournament T of diameter 2, we show 2 ≤ −→

rc(T ) ≤ 3.
Furthermore, we provide a general upper bound on the rainbow k-connection number
of tournaments as a simple example of the probabilistic method. Finally, we show that
an edge-colored tournament of kth diameter 2 has rainbow k-connection number at
most approximately k2.

1 Introduction

The concept of rainbow connection was first introduced by Chartrand et al. in [3]. A path
in an edge-colored graph is called rainbow if no two edges in the path receive the same color.
The rainbow connection number of a graph is the minimum number of colors needed to color
the edges of the graph so that there is a rainbow path between every pair of vertices. This
and the more general rainbow k-connection number have been heavily studied in recent years
in [2, 3, 4, 5, 7, 8, 10] and many other works. In particular, see [9] for a survey of results in
the area.

A tournament T is an oriented complete graph. We consider only k-strongly connected

(or simply k-strong) tournaments, meaning that there are k internally disjoint directed paths
from each vertex to every other vertex. A directed path between two vertices in an edge-
colored tournament is called rainbow if no two edges have the same color within the path. If
there is a directed rainbow path between every pair of vertices in a graph, then the coloring
is called rainbow connected. The smallest number of colors needed for a tournament to be
rainbow connected is called the (directed) rainbow connection number, denoted −→rc(T ). The
diameter d of a tournament is the largest, over all ordered pairs of vertices, number of edges
in the shortest path between the two vertices.

In [6], the following theorem was proven.

Theorem 1 (Dorbec et al. [6]). For any tournament T of diameter d,

d ≤ −→rc(T ) ≤ d + 2.

The authors noted that d + 2 may not be the best upper bound.

Question 1. For each diameter d, is d + 1 or d + 2 the sharp upper bound on −→rc(T ) where

T has diameter d.

We believe that a (d + 1)-coloring is possible, at least in some cases. Indeed, we show
that for tournaments of diameter 2, this improved upper bound holds.

Theorem 2. For any tournament T of diameter 2,

2 ≤ −→rc(T ) ≤ 3.

The proof of this result is provided in Section 2.
More generally, we initiate the study of the rainbow k-connection number of a tourna-

ment. An edge-colored tournament is called rainbow k-connected if, between every pair of
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vertices, there is a set of k internally disjoint rainbow paths. The rainbow k-connection
number of a tournament, denoted −→rck(T ), is then the minimum number of colors needed to
produce a rainbow k-connected coloring of the tournament T . To state our next result, we
let the k-total-diameter, denoted dk(T ), be the maximum (over all pairs of vertices) of the
smallest number of edges in a set of k internally disjoint paths between the vertices.

Theorem 3. Given an integer k ≥ 2 and a tournament T of order n with dk(T ) = d,

−→rck(T ) ≤
d

1 − (1 − 1
n2 )1/d

.

The proof of Theorem 3 is an easy application of the probabilistic method and is presented
in Section 3.

Next we define some more notation. Say a set of k internally disjoint paths from a vertex
x to a vertex y is minimum if the longest path in the set is as short as possible, over all such
sets of paths. Let the kth diameter denote the maximum length, over all pairs of vertices
u, v, of the longest path in a minimum set of k internally disjoint u−v paths. More formally,
if ℓk(u, v) is the minimum length of the longest path in a set of k internally disjoint u − v
paths, then the kth diameter of a graph G is

max
u,v∈V (G)

ℓk(u, v).

Note that the 1st diameter is simply the diameter of the graph. Also note that the kth

diameter is at least dk(T )
k

. Our final result considers tournaments with small kth diameter
and provides a bound on the rainbow connection number.

Theorem 4. A strongly connected tournament T of kth diameter 2 has −→rck(T ) ≤ 3+k+2
(

k
2

)

.

The proof of Theorem 4 is presented in Section 4. This naturally leads to the following
problem.

Problem 1. Produce sharp bounds on −→rck(T ) in terms of the kth diameter of T .

2 Proof of Theorem 2

The sharpness of the upper bound is given by the following example. Let A be a directed
triangle and let u and v be single vertices. Direct all edges from v to A, from A to u and
from u to v. Any 2-coloring of this graph must color two edges of A with a single color. This
induces a directed monochromatic P3. Let a1 be the initial vertex of this P3 and let a3 be
the terminal vertex and note that the edge between a1 and a3 is directed from a3 to a1. See
Figure 1.

The only possible rainbow path from a1 to a3 must pass through u and v, meaning that it
must use 3 different colors. Thus, this graph has diameter 2 but rainbow connection number
3. Larger graphs with the same property can be built by replacing vertices with directed
triangles and blowing up edges in the natural way.

We now prove Theorem 2.
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A

u

v

Figure 1: A tournament T with diameter 2 and rainbow connection number 3.

Proof. Let T be a tournament of diameter 2. Let a → b → c be a shortest path from a vertex
a to another vertex c. Let A1 denote the out-neighborhood of a and let A2 = T \ (A1∪{a}).
Note that Ai is the set of vertices at distance i from a and, in particular, b ∈ A1 and c ∈ A2.
Color all edges from a to A1 with color 1 (red in Figure 2). All edges from vertices in A1

to vertices in A2 have color 2 (blue), and all edges from vertices in A2 to the vertex a have
color 3 (green). All edges from vertices in A2 to vertices in A1 also have color 3. Finally, all
edges within the same set, either A1 or A2, have color 1. This coloring is similar to the one
used by Dorbec et al. in [6] to prove Theorem 1.

A1 A2

a

Figure 2: Coloring of the tournament.

In order to show that this coloring is rainbow connected, we consider cases based on the
location of two selected vertices x and y and find rainbow paths between them.

If x = a, we trivially find a rainbow path to y for any choice of y ∈ A1 since A1 is the
out-neighborhood of a. If y ∈ A2, then by construction, there is a rainbow path containing
some vertex w ∈ A1 such that x → w → y with colors 1 and 2 respectively.

If y = a and x ∈ A2, the result is again trivial since a is an out-neighbor of every vertex
in A2. Also, if x ∈ A1, then again there is a rainbow path of length 2, namely x → w → y
for some w ∈ A2 using colors 2 and 3.

If x ∈ A2 and y ∈ A1, then, by construction, there is a rainbow path x → a → y using
colors 3 and 1, respectively.

Finally, suppose x ∈ A1 and y ∈ A2. If the edge x → y is in E(T ), then there is a trivially
rainbow path of length 1. Since the diameter is 2, there exists a vertex with x → w → y.
Regardless of the location of w, this path is rainbow by construction. More specifically, if
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w ∈ A1, then the path x → w → y uses colors 1 and 2, respectively. If w ∈ A2, then the
path x → w → y exists uses colors 2 and 1, respectively. Hence, every tournament with
diameter 2 has rainbow connection number at most 3.

3 Proof of Theorem 3

For this proof, we use the probabilistic method as described by Alon and Spencer in [1].
This bound is likely far from the best possible, particularly when n is much bigger than d,
and we make little effort to optimize it.

We now prove Theorem 3.

Proof. Consider a tournament on n vertices and set c = d
1−(1− 1

n2
)1/d

. Label the vertices of T

with {v1, v2, . . . , vn}. Randomly color the edges of T using c colors. Let Xi,j be an indicator
variable which takes the value 1 if there is no set of k internally disjoint rainbow paths from
vi to vj . Since there is a set of such paths on at most d edges, we compute the expectation
of Xi,j to be

E(Xi,j) = 1 −
c!

(c− d + 1)!cd
< 1 −

(

1 −
d

c

)d

.

By linearity of expectation, if we set X =
∑

i,j Xi,j, we get

E(X) =
∑

E(Xi,j) ≤ 2

(

n

2

)

(

1 −

(

1 −
d

c

)d
)

.

Since c = d
1−(1− 1

n2
)1/d

, we see that E(X) < 1 so, by the probabilistic method, there is a

coloring of T with c colors that is rainbow k-connected.

4 Proof of Theorem 4

For a tournament T of kth diameter 2, we use the following coloring. Select a k-subset of
vertices A := {v1, v2, . . . , vk}. Now, let the set of all out-neighbors of A be called A1 and
color all edges of the form A → A1 with the color C1 and edges of the form A1 → A with
color C2. Let N ′

i ⊆ A1 be the out-neighborhood of vi for each 1 ≤ i ≤ k. Define sets

Ni = N ′

i \ (∪j<iNj)

for all 1 ≤ i ≤ k. We use one distinct color CNi
on all edges within each set Ni for all i for

a total of k colors. Use at most 2
(

k
2

)

distinct colors to color the remaining edges of A1 such
that edges of the form Ni → Nj have a different color from those of the form Nj → Ni for
all i 6= j. This uses a total of 2

(

k
2

)

+ k colors to color A1.
Let A2 be the set of all remaining vertices so that A2 is in the out-neighborhood of A1

and A is in the out-neighborhood of A2. It should be noted that A2 = ∅ is allowed. Color
all edges of the form A1 → A2 with color C2 and the edges from A2 → A with color C3.
All edges from A to A2 have color C1 and all edges from A2 to A1 have color C3. The
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edges within the set A are colored using
(

k
2

)

of the colors previously used between sets in
A1. The edges within the set A2, if they exist, are allowed to be any color except C3. Hence
3 + k + 2

(

k
2

)

colors are used to color T .
In order to show that this coloring is rainbow connected, we consider cases based on the

location of vertices x and y and find k rainbow paths from x to y.
If x = vi and y = vj for some i 6= j, then there are k internally disjoint paths of length at

most 2 that each must be one the following: x → y, x → Ni → y, or x → vh → y for some
h 6= i, j. All paths of these forms are rainbow by construction.

If x, y ∈ A2 then there are k internally disjoint paths of length 3 that each must be one
of the following: x → vi → Ni → y, or x → vi → Nj → y for all i with 1 ≤ i ≤ k and for
some j 6= i. All such paths are rainbow by construction.

If x ∈ A1 and y = vi then there are k internally disjoint rainbow paths of length at most
2, each having one the following forms: x → vk → y, or x → w → y, where w ∈ A1 and
w = y is allowed. If x = vi and y ∈ A1 then there exist k internally disjoint rainbow paths
of the form x → w → y where each w ∈ A1 and w = y is allowed.

If x = vi and y ∈ A2 then there are k internally disjoint rainbow paths of the form
x → A1 → y. If x ∈ A2 and y = vi then there exist k internally disjoint rainbow paths
x → w → y where each w is anywhere and w = y is allowed.

If x ∈ A1, say x ∈ Ni, and y ∈ A2, then there are easily k internally disjoint rainbow
paths from x to y as in previous cases. If x ∈ A2 and y ∈ A1 then there are k internally
disjoint rainbow paths such that x → vi → Ni → y for all i.

Finally, suppose x, y ∈ A1. If x ∈ Ni and y /∈ Ni, then there are k internally disjoint
rainbow paths of the form x → w → y, where w is anywhere. Now let x, y ∈ Ni. Since there
are k internally disjoint paths of length at most 2 from x → vi, there exist k out-neighbors
of x that are outside Ni. Call this set Nx. Since the diameter is 2, there are k internally
disjoint paths of the form Nx → w → y where w can be anywhere. Hence, there are k
internally disjoint rainbow paths from x to y of the form x → Nx → w → y.

This completes the proof of Theorem 4.

5 Concluding Remarks

Unfortunately our method used in the proofs of Theorems 2 and 4 does not extend to
tournaments of diameter larger than 2 so the question of a sharp result in Question 1 and
Problem 1 remains open even for diameter 3. The bottleneck is clearly going from vertices
in A1 to vertices in A2 as defined in the proofs.
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