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Figure 2.7: The time response for the x5 variable when forcing a change on its correspond-

ing dependent variables.
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CHAPTER 3

THE NETWORK’S SELF-EVOLUTION

3.1 Data gathering

After getting a general idea of how the network changed with a change in one variable we

then advanced to modeling the entire gene network.

3.1.1 Natural Evolution of the Network

To start doing this we initially need data from the network as it evolved naturally through

time, similarly to how we did for the first part of this research but with a few changes. In

order to obtain this data from the network we would first pull the original transition matrix

from the excel file, the same one that is used in the first part of our research. Once the Excel

file is read into the MATLAB program we then multiply a initial and arbitrary probability

distribution, in our case:

X0 =

[
0 1 0 0 0 0 0

]
,

by the transition matrix: 

R X1 X2 X3 X4 X5 T

R 1
6

1
6

1
6

1
6

1
6

1
6

0

X1
1
5

1
5

1
5

0 1
5

0 1
5

X2
1
6

1
6

1
6

1
6

0 1
6

1
6

X3
1
6

0 1
6

1
6

1
6

1
6

1
6

X4
1
5

0 0 1
5

1
5

1
5

1
5

X5
1
6

1
6

0 1
6

1
6

1
6

1
6

T 1
2

0 0 0 0 0 1
2


.
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Once this is done we now have a new probability distribution:

X1 =

[
1
5

1
5

0 1
5

1
5

0 1
5

]
,

which we can multiply to the transition matrix and come up with a new probability distri-

bution. We repeat this loop until the values in each element in the are the same each loop.

Once we have these values we can then find the finite differences, as discussed in Chapter

2, of the data and store that in an excel file.

3.1.2 Initial setup of system of differential equations

After creating these new plots we began the process of making generic forms of the

differential equations that would represent the dynamics of each variable within the system.

Based on the plots we got the following five differential equations:

ẋ1 = r11x1 + r12x1x2 + r13x5

ẋ2 = r21x1 + r22x2 + r23x3 + r24x1x2

ẋ3 = r31x2 + r32x3 + r33x4 + r34x5 + r35x
2
3

ẋ4 = r41x1 + r42x1x3 + r43x4 + r44x5

ẋ5 = r51x2x3 + r52x4 + r53x5

Once these differential equations were formed we then moved on to finding the right

values to use for the parameters rij in the equations.

3.1.3 Generating the data for use in finding the parameters

In order to find the parameters of the equations we came up with we needed to first

have some numerical data so that we can find precisely what each parameter is. To do this

we created another MATLAB script that reads the transition matrix from the excel file then,
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using a for-loop, we multiplied the transition matrix by an initial probability distribution

[0 1 0 0 0 0 0] to get a new vector and repeated this for a few hundred times to collect

the samples. In doing this we were able to find what the transition matrix’s probability

distribution converged to, which was then considered the stationary distribution. Using

the data provided from doing this we could now proceed to estimate the parameters of the

system of differential equations.

3.2 Finding parameters of the equations

3.2.1 First set, an example

In order to estimate the parameters of the system of equations we first had to work out

a few things. First we decided that based on the size of the system using a method such as

Monte Carlo simulation was not needed and that we could use a Least-Squares method to

estimate the likelihood of the parameters. To do this we first needed to derive the system of

equations for the parameters based on the method of least-squares, as shown with the work

done below for the first differential equation out of the system:

First we needed to set up the performance index.

J =
1

2

N∑
i=1

[r11x1i + r12x2i + r13x5i − ẋ1i]
2

,

where ẋ1i are the derivative samples.

After finding the general least-squares equation we find the derivative of each, with

respect to a particular parameter in the following fashion. Each of these derivatives with

respect to a parameter are set to zero.
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∂J

∂r11
= r11

N∑
i=1

x2
1i + r12

N∑
i=1

x1ix2i + r13

N∑
i=1

x1ix5i −
N∑
i=1

x1iẋ1i = 0

∂J

∂r12
= r11

N∑
i=1

x1ix2i + r12

N∑
i=1

x2
2i + r13

N∑
i=1

x2ix5i −
N∑
i=1

x2iẋ1i = 0

∂J

∂r13
= r11

N∑
i=1

x1ix5i + r12

N∑
i=1

x2ix5i + r13

N∑
i=1

x2
5i −

N∑
i=1

x5iẋ1i = 0

Therefore, the parameters satisfy the following system of equations:

N∑
i=1

x1iẋ1i = r11

N∑
i=1

x2
1i + r12

N∑
i=1

x1ix2i + r13

N∑
i=1

x1ix5i

N∑
i=1

x2iẋ1i = r11

N∑
i=1

x1ix2i + r12

N∑
i=1

x2
2i + r13

N∑
i=1

x2ix5i

N∑
i=1

x5iẋ1i = r11

N∑
i=1

x1ix5i + r12

N∑
i=1

x2ix5i + r13

N∑
i=1

x2
5i

3.2.2 First matrices set up

If you examine the system of equations given above you will notice that it can also

be written in the matrix form as shown below, however, instead of the x-values being in a

column and being multiplied by parameters it is reversed.
∑N

i=1 x
2
1i

∑N
i=1 x2i

∑N
i=1 x1ix5i∑N

i=1 x1ix2i

∑N
i=1 x

2
2i

∑N
i=1 x2ix5i∑N

i=1 x1ix5i

∑N
i=1 x2ix5i

∑N
i=1 x

2
5i



r11

r12

r13

 =


∑N

i=1 x1iẋ1i∑N
i=1 x2iẋ1i∑N
i=1 x5iẋ1i

 .

Once we have the least-squares equation in matrix form we can now use a MATLAB

script to compute the correct parameters. Once these parameters are found they are stored

in a “.dat” file to be used in the next stage of this research.
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3.3 Second set

This set is done similarly to the above example.

3.3.1 Second Least-Squares Equation Work

The performance index:

J =
1

2

N∑
i=1

[r21x1i + r22x2i + r23x3i + r24x1ix2 − ẋ2i]
2

Similar to the previous case, by setting the derivatives of this parameter index to zero,

we find the following system of equations:

∂J

∂r21
= r21

N∑
i=1

x21i + r22

N∑
i=1

x1ix2i + r23

N∑
i=1

x1ix3i + r24

N∑
i=1

x21ix2 −
N∑
i=1

x1iẋ2i = 0

∂J

∂r22
= r21

N∑
i=1

x1ix2i + r22

N∑
i=1

x22i + r23

N∑
i=1

x2ix3i + r24

N∑
i=1

x1ix
2
2 −

N∑
i=1

x2iẋ2i = 0

∂J

∂r23
= r21

N∑
i=1

x1ix3i + r22

N∑
i=1

x2ix3i + r23

N∑
i=1

x23i + r24

N∑
i=1

x1ix2x3i −
N∑
i=1

x3iẋ2i = 0

∂J

∂r24
= r21

N∑
i=1

x21ix2i + r22

N∑
i=1

x1ix
2
2i + r23

N∑
i=1

x1ix2ix3i + r24

N∑
i=1

x21ix
2
2 −

N∑
i=1

x1ix2iẋ2i = 0

To obtain:
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N∑
i=1

x1iẋ2i = r21

N∑
i=1

x21i + r22

N∑
i=1

x1ix2i + r23

N∑
i=1

x1ix3i + r24

N∑
i=1

x21ix2

N∑
i=1

x2iẋ2i = r21

N∑
i=1

x1ix2i + r22

N∑
i=1

x22i + r23

N∑
i=1

x2ix3i + r24

N∑
i=1

x1ix
2
2

N∑
i=1

x3iẋ2i = r21

N∑
i=1

x1ix3i + r22

N∑
i=1

x2ix3i + r23

N∑
i=1

x23i + r24

N∑
i=1

x1ix2x3i

N∑
i=1

x1ix2iẋ2i = r21

N∑
i=1

x21ix2i + r22

N∑
i=1

x1ix
2
2i + r23

N∑
i=1

x1ix2ix3i + r24

N∑
i=1

x21ix
2
2

3.3.2 Second matrices set up



∑N
i=1 x

2
1i

∑N
i=1 x1ix2i

∑N
i=1 x1ix3i

∑N
i=1 x

2
1ix2∑N

i=1 x1ix2i
∑N

i=1 x
2
2i

∑N
i=1 x2ix3i

∑N
i=1 x1ix

2
2∑N

i=1 x1ix3i
∑N

i=1 x2ix3i
∑N

i=1 x
2
3i

∑N
i=1 x1ix2x3i∑N

i=1 x
2
1ix2i

∑N
i=1 x1ix

2
2i

∑N
i=1 x1ix2ix3i

∑N
i=1 x

2
1ix

2
2





r21

r22

r23

r24


=



∑N
i=1 x1iẋ2i∑N
i=1 x2iẋ2i∑N
i=1 x3iẋ2i∑N

i=1 x1ix2iẋ2i


.

3.4 Third set

3.4.1 Third Least-Squares Equation Work

For the third performance index we get:

J =
1

2

N∑
i=1

[r31x2i + r32x4ix5i + r33x
2
3i − ẋ3i]

2

After setting the derivatives with respect to their respective parameters to zero:
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∂J

∂r31
= r31

N∑
i=1

x22i + r32

N∑
i=1

x2ix4ix5i + r33

N∑
i=1

x2ix
2
3i −

N∑
i=1

x2iẋ3i = 0

∂J

∂r32
= r31

N∑
i=1

x2ix4ix5i + r32

N∑
i=1

x24ix
2
5i + r33

N∑
i=1

x23ix4ix5i −
N∑
i=1

x4ix5iẋ3i = 0

∂J

∂r33
= r31

N∑
i=1

x2ix
2
3i + r32

N∑
i=1

x23ix4ix5i + r33

N∑
i=1

x43i −
N∑
i=1

x23iẋ3i = 0

We obtain:

N∑
i=1

x2iẋ3i = r31

N∑
i=1

x22i + r32

N∑
i=1

x2ix4ix5i + r33

N∑
i=1

x2ix
2
3i

N∑
i=1

x4ix5iẋ3i = r31

N∑
i=1

x2ix4ix5i + r32

N∑
i=1

x24ix
2
5i + r33

N∑
i=1

x4ix5ix
2
3i

N∑
i=1

x23iẋ3i = r31

N∑
i=1

x2ix
2
3i + r32

N∑
i=1

x23ix4ix5i + r33

N∑
i=1

x43i

3.4.2 Third matrices set up


∑N

i=1 x
2
2i

∑N
i=1 x2ix4ix5i

∑N
i=1 x

2
3i∑N

i=1 x2ix4ix5i
∑N

i=1 x
2
4ix

2
5i

∑N
i=1 x

2
3ix4ix5i∑N

i=1 x2ix
2
3i

∑N
i=1 x

2
3ix4ix5i

∑N
i=1 x

4
3i



r31

r32

r33

 =


∑N

i=1 x2iẋ3i∑N
i=1 x4ix5iẋ3i∑N
i=1 x

2
3iẋ3i

 .
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3.5 Fourth set

3.5.1 Fourth Least-Squares Equation Work

For the fourth performance index we get:

J =
1

2

N∑
i=1

[r41x1 + r42x3i + r43x4ix5i + r44x
2
4i − ẋ4i]

2

After setting the derivatives with respect to their respective parameters to zero:

∂J

∂r41
= r41

N∑
i=1

x
2
1i + r42

N∑
i=1

x1ix3i + r43

N∑
i=1

x1ix4ix5i + r44

N∑
i=1

x1ix
2
4i −

N∑
i=1

x1iẋ4i = 0

∂J

∂r42
= r41

N∑
i=1

x1ix3i + r42

N∑
i=1

x
2
3i + r43

N∑
i=1

x3ix4ix5i + r44

N∑
i=1

x3ix
2
5i −

N∑
i=1

x3iẋ4i = 0

∂J

∂r43
= r41

N∑
i=1

x1ix4ix5i + r42

N∑
i=1

x3ix4ix5i + r43

N∑
i=1

x
2
4ix

2
5i + r44

N∑
i=1

x
3
4ix5i −

N∑
i=1

x4ix5iẋ4i = 0

∂J

∂r44
= r41

N∑
i=1

x1ix
2
4i + r42

N∑
i=1

x3ix
2
4i + r43

N∑
i=1

x
3
4ix5i + r44

N∑
i=1

x
4
4i −

N∑
i=1

x
2
4iẋ4i = 0

We obtain:
N∑

i=1

x1iẋ4i = r41

N∑
i=1

x
2
1i + r42

N∑
i=1

x1ix3i + r43

N∑
i=1

x1ix4ix5i + r44

N∑
i=1

x1ix
2
4i

N∑
i=1

x3iẋ4i = r41

N∑
i=1

x1ix3i + r42

N∑
i=1

x
2
3i + r43

N∑
i=1

x3ix4ix5i + r44

N∑
i=1

x3ix
2
4i

N∑
i=1

x4ix5iẋ4i = r41

N∑
i=1

x1ix4ix5i + r42

N∑
i=1

x3ix4ix5i + r43

N∑
i=1

x
2
4ix

2
5i + r44

N∑
i=1

x
2
4ix

2
5i

N∑
i=1

x
2
4iẋ4i = r41

N∑
i=1

x1ix
2
4i + r42

N∑
i=1

x3ix
2
4i + r43

N∑
i=1

x
3
4ix5i + r44

N∑
i=1

x
4
4i

3.5.2 Fourth matrices set up



∑N
i=1 x2

1i

∑N
i=1 x1ix3i

∑N
i=1 x1ix4ix5i

∑N
i=1 x1ix

2
4i∑N

i=1 x1ix3i
∑N

i=1 x2
3i

∑N
i=1 x3ix4ix5i

∑N
i=1 x3ix

2
4i∑N

i=1 x1ix4ix5i
∑N

i=1 x3ix4ix5i
∑N

i=1 x2
4ix

2
5i

∑N
i=1 x3

4ix5i∑N
i=1 x1ix

2
4i

∑N
i=1 x3ix

2
4i

∑N
i=1 x3

4ix5i
∑N

i=1 x4
4i




r41

r42

r43

r44

 =



∑N
i=1 x1iẋ4i∑N
i=1 x3iẋ4i∑N

i=1 x4ix5iẋ4i∑N
i=1 x2

4iẋ4i

 .
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3.6 Fifth set

3.6.1 Fifth Least-Squares Equation Work

For the fifth performance index we get:

J =
1

2

N∑
i=1

[r51x2i + r52x3i + r53x4ix5i + r54x5i − ẋ5i]
2

After setting the derivatives with respect to their respective parameters to zero:

∂J

∂r51
= r51

N∑
i=1

x22i + r52

N∑
i=1

x2ix3i + r53

N∑
i=1

x2ix4ix5i + r54

N∑
i=1

x2ix5i −
N∑
i=1

x2ix3iẋ5i = 0

∂J

∂r52
= r51

N∑
i=1

x2ix3i + r52

N∑
i=1

x23i + r53

N∑
i=1

x3ix4ix5i + r54

N∑
i=1

x3ix5i −
N∑
i=1

x3iẋ5i = 0

∂J

∂r53
= r51

N∑
i=1

x2ix4i + r52

N∑
i=1

x3ix4i + r53

N∑
i=1

x24ix
2
5i + r54

N∑
i=1

x4ix
2
5i −

N∑
i=1

x4ix5iẋ5i = 0

∂J

∂r54
= r51

N∑
i=1

x2ix5i + r52

N∑
i=1

x3ix5i + r53

N∑
i=1

x4ix
2
5i + r54

N∑
i=1

x25i −
N∑
i=1

x5iẋ5i = 0

We obtain:

N∑
i=1

x2iẋ5i = r51

N∑
i=1

x22i + r52

N∑
i=1

x2ix3i + r53

N∑
i=1

x2ix4i + r54

N∑
i=1

x2ix5i

N∑
i=1

x3iẋ5i = r51

N∑
i=1

x2ix3i + r52

N∑
i=1

x23i + r53

N∑
i=1

x3ix4ix5i + r54

N∑
i=1

x3ix5i

N∑
i=1

x4ix5iẋ5i = r51

N∑
i=1

x2ix4ix5i + r52

N∑
i=1

x3ix4ix5i + r53

N∑
i=1

x24ix
2
5i + r54

N∑
i=1

x4ix
2
5i

N∑
i=1

x5iẋ5i = r51

N∑
i=1

x2ix5i + r52

N∑
i=1

x3ix5i + r53

N∑
i=1

x4ix
2
5i + r54

N∑
i=1

x25i
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3.6.2 Fifth matrices set up



∑N
i=1 x2

2i

∑N
i=1 x2ix3i

∑N
i=1 x2ix4i + r54

∑N
i=1 x2ix5i∑N

i=1 x2ix3i sumN
i=1x

2
3i

∑N
i=1 x3ix4ix5i

∑N
i=1 x3ix5i∑N

i=1 x2ix4ix5i
∑N

i=1 x3ix4ix5i
∑N

i=1 x2
4ix

2
5i

∑N
i=1 x4ix

2
5i∑N

i=1 x2ix5i
∑N

i=1 x3ix5i
∑N

i=1 x4ix
2
5i

∑N
i=1 x2

5i




r51

r52

r53

r54

 =



∑N
i=1 x2iẋ5i∑N
i=1 x3iẋ5i∑N

i=1 x4ix5iẋ5i∑N
i=1 x5iẋ5i

 .

3.7 Gauss-Seidel Method

One of the methods that was used to find the parameters is the Gauss-Seidel Method. This

method is used when conventional least squares methods cannot be used, such as when one has an

ill-conditioned matrix. In order to use this method one still needs a matrix that is derived using the

derivatives of the least squares equation at hand with respect to each of the parameters. Once one

has the matrix we can set up the equation:

[A][x] = [b]

where in this case [x] is the parameters, rij we are searching for and [b] are the sums of the data,∑N
i=1 xi from the respective variables used.

To use Gauss-Seidel Method we shall solve equation 3.1 iteratively assuming the initial x-

values are zero. Once we find the new x-values we then plug these new values in to find a new set

of x-values. We do this iteratively until we hit a stopping criteria, ε, which is the error between the

newest value of xi and the last value of xi.

To illustrate this method we shall use a 3× 3 symmetric matrix for [A] and a vector for [b] in

the equation:


3 6 5

6 2 7

5 7 1



x1

x2

x3

 =


5

3

6

 .

Now that we have this set up we can solve for each parameter:
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xk1 =
5− 6xk−1

2 − 5xk−1
3

3

xk2 =
3− 6xk1 − 7xk−1

3

2

xk3 =
6− 5xk1 − 7xk2

1

where the k marks the iteration version of the parameter.

Now we just use the [x]ki equations for the iterations. For the first iteration the [x]k vector shall

be:

[x]0 =


0

0

0


Now the results for the first iteration:

x11 =
5− 6 ∗ 0− 5 ∗ 0

3
=

5

3

x12 =
3− 6 ∗ 5

3 − 7 ∗ 0
2

=
−7

2

x13 =
6− 5 ∗ 5

3 − 7 ∗ −7
2

1
=

133

6

To get the second iteration we just have to do the same thing but using the new vector, [x]1,

instead of [x]0 then:

[x]2 =


−509
6

2141
6

−6203
3


Thus you have your second iteration of values for [x] using Gauss-Seidel Method.
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3.8 Results

This part of the research resulted in the network dynamics for this system.

3.8.1 Plots of the evolution of the network

These plots show data of each variable and the rate of change for each variable.

In Figure 3.1 we see the data gathered for the x1 variable using the programs described above.

The first plot shows the actual data generated using the given constraints described above. The

following four plots show the results of the data generated of the other four variables.

Figure 3.1: State of X1 and its finite difference.

3.8.2 The comparison plots that show the observed dynamics with the cal-

culated dynamics of the system

The following plots illustrate our results, which come after generating data and a parameter

search involving least squares methods. The plots show the contrast between the data generated
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Figure 3.2: State of X2 and its finite difference.

Figure 3.3: State of X3 and its finite difference.

versus the approximated differential equations using the newly found parameters.

3.8.3 The System of Differential Equations Found

∂x1
∂t

= −0.6 ∗ x1 + 0.1 ∗ x2 + 0.393 ∗ x5
∂x2
∂t

= 0.5 ∗ x1 − 0.6 ∗ x2 + .2 ∗ x3 − 1.8 ∗ x1 ∗ x2
∂x3
∂t

= 0.2 ∗ x2 + 0.1 ∗ x4 ∗ x5 − 1.395 ∗ x23
∂x4
∂t

= 0.3 ∗ x1 + 0.1 ∗ x3 − 0.5 ∗ x4 ∗ x5 − 2.139 ∗ x24
∂x5
∂t

= 0.3 ∗ x2 + 0.1 ∗ x3 − 0.8 ∗ x4 ∗ x5 − 0.236 ∗ x5
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Figure 3.4: State of X4 and its finite difference.

Figure 3.5: State of X5 and its finite difference.

The following figures show the plots of the systems of equations found using Runge-Kutta

methods overlayed with the original collected data.

3.8.4 Stability Analysis

Now that we have approximated the system of differential equations that define the network

an analysis of the stability is performed. To do this we have to take the Jacobian of the system by
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Figure 3.6: Actual finite differences for X1 and the finite differences estimated from the

parameters found using least squares methods.

first setting the system of differential equations to zero:

−0.6 ∗ x1 + 0.1 ∗ x2 + 0.393 ∗ x5 = 0

0.5 ∗ x1 − 0.6 ∗ x2 + 0.2 ∗ x3 − 1.8 ∗ x1 ∗ x2 = 0

0.2 ∗ x2 + 0.1 ∗ x4 ∗ x5 − 1.395 ∗ x23 = 0

0.3 ∗ x1 + 0.1 ∗ x3 − 0.5 ∗ x4 ∗ x5 − 2.139 ∗ x24 = 0

0.3 ∗ x2 + 0.1 ∗ x3 − 0.8 ∗ x4 ∗ x5 − 0.236 ∗ x5 = 0

Now to construct the Jacobian matrix we take the first derivative of each equation with respect to

the five variables that make up the network to create:



−0.6 0.1 0 0 0.393

0.5− 1.8 ∗ x2 −0.6− 1.8 ∗ x1 0.2 0 0

0 0.2 −2.790 ∗ x3 0.1 ∗ x5 0.1 ∗ x4

0.3 0 0.1 −0.5 ∗ x5 − 4.278 ∗ x4 −0.5 ∗ x4

0 0.3 0.1 −0.8 ∗ x5 −0.8 ∗ x4 − 0.236


After constructing the Jacobian we then find the steady-state approximation for each variable

using the last data points from the variable state versus step response plots, which was the stationary
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Figure 3.7: Actual finite differences for X2 and the finite differences estimated from the

parameters found using least squares methods.

distribution:

X =

[
0.09199491315 0.09109270746 0.1187114309 0.1228228975 0.1172714431

]
. This steady-state approximation will be considered the equilibrium point of the system of differ-

ential equations. We then find the eigenvectors and their corresponding eigenvalues of the Jacobian

using the equilibrium point approximations using matlab to get the following eigen-pairs (eigenvec-

tor and eigenvalue):

−0.0722− 0.3217i

−0.7276 + 0.0000i

0.2816 + 0.0645i

−0.1449 + 0.3553i

0.3307 + 0.1476i


; −0.8097 + 0.1308i



−0.0722 + 0.3217i

−0.7276 + 0.0000i

0.2816− 0.0645i

−0.1449− 0.3553i

0.3307− 0.1476i


; −0.8097− 0.1308i



−0.5205 + 0.0000i

−0.3877 + 0.0000i

−0.3978 + 0.0000i

−0.3413 + 0.0000i

−0.5513 + 0.0000i


; −0.1092 + 0.0000i



0.4258 + 0.2925i

0.2521 + 0.0537i

−0.3277− 0.3177i

0.6510 + 0.0000i

0.0541 + 0.1779i


; −0.4433 + 0.0692i
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Figure 3.8: Actual finite differences for X3 and the finite differences estimated from the

parameters found using least squares methods



−0.2925i

0.2521− 0.0537i

−0.3277 + 0.3177i

0.6510 + 0.0000i

0.0541− 0.1779i


; −0.4433− 0.0692i.

According to a theorem on the linear stability at a point, since the eigenvalues of each eigen-

pair have negative valued real parts the system of differential equations is stable.

What having a stable equilibrium point means for this system of differential equations is that

the network would not easily be unstabilized given disturbances from outside the network.
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Figure 3.9: Actual finite differences for X4 and the finite differences estimated from the

parameters found using least squares methods

Figure 3.10: Actual finite differences for X5 and the finite differences estimated from the

parameters found using least squares methods
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Figure 3.11: Actual state of X1 and the predicted state found using the RK-4 method.

Figure 3.12: Actual state of X2 and the predicted state found using the RK-4 method.

Figure 3.13: Actual state of X3 and the predicted state found using the RK-4 method.
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Figure 3.14: Actual state of X4 and the predicted state found using the RK-4 method.

Figure 3.15: Actual state of X5 and the predicted state found using the RK-4 method.
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CHAPTER 4

IN CLOSING

The resulting system of differential equations and stability analysis of the system of differential

equations implies that this gene network is stable. As viewed in a biological sense this means that

this gene network should be very hard to disrupt so that the cell cycle does not have problems on

a regular basis. That being said there are a lot of different mechanisms within the cell, outside this

gene network, which help in maintaining the network’s stability.

Future work can be done to find the breaking points for this gene network and other networks

like it. As was stated earlier, this research is meant to help find a treatment schedule for breat cancer

patients. The gathered data serves as a starting point for finding such schedules.
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