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ABSTRACT

Strategies for the analysis of discrete data under order restrictions are discussed.

We consider inference for sequences of binomial populations, and the corresponding

risk difference, relative risk and odds ratios. These concepts are extended to deal with

independent multinomial populations. Natural orderings such as stochastic ordering

and cumulative ratio probability ordering are discussed. Methods are developed for

the estimation and testing of differences between binomial as well as multinomial

populations under order restrictions. In particular, inference for sequences of ordered

binomial probabilities and cumulative probability ratios in multinomial populations

are presented. Closed-form estimates of the multinomial parameters under order

restrictions and test procedures for testing equality of two multinomial populations

against the notion of cumulative probability ratio ordering which is stronger than

stochastic ordering of the distributions are presented. Numerical examples are given

to illustrate the techniques developed.
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CHAPTER 1

INTRODUCTION

Many recent papers have been concerned with estimation and testing of binomial and

multinomial populations under order restrictions (see for example Chacko (1966),

Robertson (1978), Robertson and Wright (1981), Lee (1987), Robertson, Wright and

Dykstra (1988), Dykstra, Kochar and Robertson (1991), and references therein). This

thesis develops tests for the equality several binomial populations as well tests of ho-

mogeneity of two multinomial populations against order-restricted alternatives. When

a study is concerned with situations in which the categories are ordered, a test of ho-

mogeneity of the two distributions against a stochastically ordered alternative, with

treatment distribution being stochastically larger than control, will be of interest.

It is often the case that disease exposure in one group may exceed that for another

group. If this is the case, it may be appropriate to consider estimation of the pa-

rameters of interest and development of test procedures that take into consideration,

the appropriate order restriction with respect to the exposure probabilities. These

estimates can then be used to construct estimates of the risk difference, relative risk

and odds ratio, where they are appropriate.

The parameter p, 0 < p < 1, is often used to represent one population proportion

and q, 0 < q < 1, is used to represent the other population. There are a few ways to

compare these two parameters. The relative risk is the ratio of p to q, or p
q
, and the

odds ratio (OR) is given by OR = p(1−q)
q(1−p) . The odds ratio is a value used to compare

two proportions. The odds ratio can be computed from values in the contingency

table. In this equation p represents the percentage chance of the affliction occurring

in the first group, and q represents the percentage chance of the affliction occurring
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in the second group.

1.1 Gathering Data: Prospective and Retrospective Studies

In a retrospective study, a researcher gathers a numbers of individuals with and

without the affliction and then counts the numbers in each group who possess and do

not possess the proposed risk factor. In this case, having or not having the affliction

is the independent variable and having or not having the proposed risk factor is the

dependent variable.

In a prospective study, a researcher gathers two cohort of individuals with and

without the proposed risk factor. In each group, they will count the number of

individuals who have (or who will develop) the affliction. In this case, having or

not having the proposed risk is the independent variable. The dependent variable is

having or not having the affliction.

In prospective studies, relative risk is used. In a retrospective study, the odds

ratio is used.

Risk factors are identified by determining whether they significantly increase

or decrease the risk of developing a disease. The magnitude of increased/decreased

risk is expressed as a relative risk or odds ratio. To determine the rates of disease

by person, place and time we use absolute risk (incidence, prevalence), to identify

the risk factors for the disease we use relative risk (or odds ratio) and to develop

approaches for disease prevention we employ attributable risk/fraction. Incidence is

the number of new cases of a disease occurring in during a given period of time divided

by the number of individuals at risk of developing the disease during the same time.
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Prevalence is the total number of existing cases of disease at a given point in time

divided by the number of individuals in the population at the time.

Relative risk (RR) is ratio of incidence of disease in exposed individuals to the

incidence of disease in non-exposed individuals (from a cohort/prospective study). If

RR > 1, there is a positive association, and if RR < 1, there is a negative association.

Similarly, odds ratio (OR) is the ratio of the odds that cases were exposed to the odds

that the controls were exposed (from a case control/retrospective study). Odds ratios

are only estimates of relative risks, since true incidence rates cannot be determined

from case control studies.

In developing approaches to disease prevention, one should consider attributable

risk (AR)/fraction (AF), where AR is the amount of disease incidence that can be

attributed to a specific exposure. Note that AF is the proportion of disease incidence

that can be attributed to a specific exposure (among those who were exposed) and

AF is AR divided by incidence in the exposed X 100percent.

Indeed, all individuals, whether they have or have not been exposed to a risk

factor, have some chance of developing a disease if no prevention measures have been

taken. AR/AF estimates the risk above and beyond this baseline risk that all people

have.

In epidemiology and statistics, the major study designs include case control (ret-

rospective), cohort (prospective) and cross sectional (one point in time). In case con-

trol studies we identify affected and unaffected individuals and the risk factor data

is collected retrospectively. In cohort (prospective) studies we identify unaffected in-

dividuals, the risk factor data collected at baseline and individuals are followed until

occurrence of the disease. In this setting, the measures of the risk are absolute risk
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(incidence), relative risk and attributable risk. The disadvantages in this case include

lengthy follow-up and criteria/methods may change over time.

In cross sectional studies, the measures of risk include absolute risk (prevalence),

odds ratio and attributable risk (if incidence is known). The disadvantages include

biased assessment of exposure, and often cause-effect assessment cannot be estab-

lished.

Often within clinical trials and the social sciences, one will have discrete data

with ordinal categories. In clinical trial setting, researchers often cannot measure a

physical quantity which would be a measure of the effectiveness of a treatment. Often

they are judged upon manifestations of the drugs effectiveness instead of performing

a measurement of a continuous variable.

Let Y be the response variable. In a clinical trial setting, the explanatory variable

X might represent the treatment number. In a social science setting it will represent

particular subsets of the populations in which the response variables are compared.

The sample sizes for each group is fixed. The parameters for the contingency table

are as follows:

πi,j = P (Y = j|X = i) (1.1)

and

γi,j = πi,1 + πi,2 + πi,3 + ...+ πi,j. (1.2)

For 2 x c tables, the local odds ratio θLj and cumulative odds ratio θCj are defined as

follows:

θLj =
π1,jπ2,j+1

π1,j+1π2,j
, (1.3)

and

θCj =
γ1,j(1− γ2,j)
(1− γ1,j)γ2,j

(1.4)
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respectively.

The null hypothesis is that treatment 1 is no better than treatment 2 corresponds

to θCj =1. The alternative hypothesis that treatment 2 is better than treatment 1 is

θCj > 1. Note that the cumulative odds ratio θCj is equivalent to merging the first j

categories into one category and categories j+1 to c into another and computing the

odds ratio of the resulting 2x2 contingency table as demonstrated above.

Another parameter of interest is the continuation odds ratio, which is the odds

ratio of a 2x2 table formed when comparing the populations at one level to those

above it. This is denoted as θCOj and is calculated as follows.

θCOj =
π1,j ∗ (π2,j+1 + π3,j+1 + ...π2,c)

π2,j ∗ (π1,j+1 + π1,j+1 + ...π1,c)
(1.5)

The continuation odds ratio being greater than or equal to 1 at all levels is

equivalent of the cumulative odds ratio being greater than or equal to 1 at all levels.

Similarly, the condition that the continuation odds ratio is greater than or equal to 1

at all levels with a the condition of being strictly greater than 1 at at least one level

is equivalent for the same in the cumulative odds ratio. These conditions carry over

for the local odds ratio as well.

In rxc tables, the values can be defined as follows.

θLi,j =
P (Y = j|X = i)P (Y = j + 1|X = i+ 1)

P (Y = j|X = i+ 1)P (Y = j + 1|X = i)
, Local Odds Ratio. (1.6)

θCi,j =
P (Y ≤ j|X = i)P (Y > j|X = i+ 1)

P (Y ≤ j|X = i+ 1)P (Y > j|X = i)
, Cumulative Odds Ratio. (1.7)

θGi,j =
P (Y ≤ j|X ≤ i)P (Y > j|X > i)

P (Y ≤ j|X ≥ i)P (Y > j|X < i)
, Global Odds Ratio. (1.8)

and

θCOi,j =
P (Y = j|X = i)P (Y > j|X = i+ 1)

P (Y = j|X = i+ 1)P (Y > |X = i)
, Continuation Odds Ratio. (1.9)
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For rxc tables, the global odds ratio is formed by making a 2x2 table by merging

all the cells into four groups depending on whether or not the level for Y (or column

number) is greater than i and whether or not the group number (row number) is

greater than j. The other three values are computed by making a 2xc table from two

adjacent rows and computing them as you would in a 2xc table.
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1.2 Outline of Results

The outline of this thesis is as follows. In chapter 1 background information is given

about the collection and processing of categorical data. Chapter 2 explains the model

used in procedures that involve a two-way contingency tables and deals with the pa-

rameter estimates under certain order restrictions. Chapter 3 introduces the trun-

cated normal variable, and the various tests procedures are developed under some

important order restrictions. Chapter 4 involves comparing several populations pro-

portions to a standard when the standard proportion is either known or unknown.

Chapter 5 contains results on procedures for comparing multinomial populations. Al-

ternative procedures in which both test statistics have in the limit the chi-square

distribution with k degrees of freedom are developed and presented.



CHAPTER 2

RESTRICTED ESTIMATES AND PROPERTIES

2.1 Introduction

In this chapter, the basic models for contingency tables are introduced. We present

the setting, derive the maximum likelihood estimate (MLE) of the parameters under

order restrictions, herein referred to as the restricted estimates of the parameter. We

also give the restricted estimates of the risk difference, relative risk and odds ratio.

Consistency of the restricted estimates is established in Theorem 2.1.

2.2 Sampling Distributions

In this section we present some of the sampling distributions are useful in the analysis

of discrete data as far as the results presented in this thesis are concerned. The most

common sampling distribution is the binomial, or the distribution independent sums

of the Bernoulli random variables. The binomial probability mass function (pmf) is

as follows

P (X = k) =
n!

k!(n− k)!
pk(1− p)n−k for 0 < p < 1 and k = 0, 1, 2, 3, ...., n. (2.1)

For trials with more than two outcomes we have the multinomial probability mass

function(pmf) given by

p(n1, n2, ..., nk) =
n!∏k
i=1 ni!

k∏
i=1

πni
i , for ni > 0,

k∑
i=1

ni = 1, and
k∑
i=1

πi = 1. (2.2)

For the multinomial distribution, the mean and variance are given by

E(ni) = nπi, and var(ni) = nπi(1− πi) (2.3)
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respectively. The covariance is cov(ni, nj) = −nπiπj.

When counts do not result from a fixed number of trials the Poisson Distribution

comes into play. The Poisson distribution is a special case of the Binomial distri-

bution. Each time subinterval within a given time interval T has a Bernoulli trial

and the parameter for the probability is adjusted so the expected value over T is

constant. The limit as the subintervals of time go to zero is the Poisson distribution.

The probability mass function (pmf) is given by

P (Y = k) =
λke−λ

k!
, k = 0, 1, ..., ·. (2.4)

where λ is the expected number of occurrences and k the number of occurrences. A

Poisson sampling distribution can be useful when the sample size is random rather

than fixed, but often one does not have the luxury. To adapt to this, the Poisson

can be conditioned on a fixed sample size. Let Y1, Y2, ..., Yk be independent Poisson

variables with means λ1, λ2, ..., λk. Then conditional distribution of Y1, Y2, ..., Yk given

Y1 + Y2 + ...+ Yk = n is

P (Y1 = n1, Y2 = n2, ..., Yk = nk|
k∑
i=1

Yi = n) =

∏k
i=1 e

−λiλni
i /ni!

e−
∑k

i=1 λi(
∑k

i=1 λi)
n/n!

=
n!∏k
i=1 ni!

k∏
i=1

πni
i , (2.5)

where πi = λi∑k
i=1 λi

. The resulting pmf is that of the multinomial distribution. The

multinomial distribution is an extension of the binomial distribution. The multino-

mial distribution plays very important role in the analysis of discrete data.
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2.3 The Setting

In this chapter, some preliminary results are presented. Consider the following setting.

We would like to test for evidence that one group (group I or group II) is more or less

likely to have the exposure (or the affliction or any other characteristic). The data

can be placed in the table of marginal information as follows.

Table 2.1: Table of Marginal Information

Groups Exposure Non-exposure total

Group I a1 a0 m1

Group II b1 b0 n2

Total a1 + b1 a0 + b0 m1 + n1

Note that a1 ∼ BINOMIAL(m1,p1) and b1 ∼ BINOMIAL(n1,q1) respectively. The

exposure variable represents whether or not a person has a proposed risk factor.

The response variable would indicate whether the person had the affliction or the

characteristic of the proposed risk factor. We wish to carry out a test in which the

null hypothesis is that p1 is equal to q1. In this table, the estimated odds ratio is

given by

θ̂ =
a1b0
b1a0

, (2.6)

and the asymptotic standard error ASE(θ̂) is given by

ASE(θ̂) =

√
1

a1
+

1

a0
+

1

b1
+

1

b0
. (2.7)

A large sample confidence interval for the odds ratio can be easily obtained as is given

by:
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2.4 Restricted Estimates

Let Xj and Yj be the number of patients that survive beyond a year in each group

of hospital j, j = 1, 2, ..., k. Clearly, Xj and Yj have binomial (mj, pj) and binomial

(nj, qj) distributions respectively. Also, let xj, yj and y∗ denote the number of suc-

cesses for the jth experimental treatment in each group and from the control group.

The MLE of pj, qj and p∗ are p̂j = xj/mj, q̂j = yj/nj and p∗ = y∗/n∗, where p∗ is

the response rate for the control experiment and n∗ is the total number trials in the

control group.

First, we give the maximum likelihood estimator of (p, q) subject to p ≥ q, where

p and q are parameters of the binomial (m, p) and binomial (n, q) distributions, with

observed values x and y respectively. We state a lemma (see Oluyede (1994)) that

establishes the existence of the maximum likelihood estimates (MLE) under the order

restriction. Consistency of the restricted estimates is established in Theorem 2.1.

Lemma 2.1. If p > q and x/m < y/n, then these exists p̄, 0 < p̄ < 1 for which

L(p̄, p̄, x, y) > L(p, q;x, y), where L(p, q;x, y) =

(
m

x

)(
n

y

)
px(1 − p)m−xqy(1 −

q)n−y.

As a consequence of the lemma, if x/m < y/n, then the likelihood function

L(p, q;x, y) subject to p ≥ q is maximized when p = q. The restricted maximum

likelihood estimate of (p, q) subject to p ≥ q is

(p∗, q∗) =

 ((x+ y)/(m+ n), (x+ y)/(m+ n)) if x/m < y/n,

(x/m, y/n) if x/m ≥ y/n.

The restricted maximum likelihood estimate of the risk difference (p − q) subject to
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p ≥ q is

(p∗ − q∗) =

 0 if x/m < y/n,

(x/m− y/n) if x/m ≥ y/n.

If q is known, the maximum likelihood estimator of p subject to p ≥ q is

p∗ =

 x/m if q ≤ x/m < 1,

q if 0 < x/m < q.

If q is known, the maximum likelihood estimator of the risk difference p − q subject

to p ≥ q is

p∗ − q =

 x/m− q if q ≤ x/m < 1,

0 if 0 < x/m < q.

The restricted estimate of the relative risk p
q

subject to p ≥ q, when q is unknown is

p∗

q∗
=


nx
my

if q ≤ x/m ≥ y/m,

1 if x/m < y/n.

If q is known, the restricted maximum likelihood estimator of the relative risk p/q

subject to p ≥ q is

p∗

q
=


x
mq

if q ≤ x/m < 1,

0 if 0 < x < mq.

The restricted estimates of the odds ratio can be readily obtained.
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Theorem 2.1.

(a) If q is known, p∗ converges in probability to p when m→∞, provided p ≥ q.

(b) (p∗, q∗) converges in probability to (p, q) when m,n→∞ provided p ≥ q.

Note that the proof of part (a) will follow quite easily once the proof of part (b) is

established, thus the statement and proof of the part (b) of the theorem is presented

below, that is, we prove the result:

If p ≥ q, then (p∗, q∗) converges in probability to (p, q), as m,n→∞.

Proof: If p = q, then for ε > 0,

P (||(p∗, q∗) − (p, q)|| > ε)

≤ P (|p∗ − p|+ |q∗ − q| > ε)

≤ P (|p∗ − p| > ε/2) + P (|q∗ − q| > ε/2) (2.8)

+ 2P (|(p∗ + q∗)/(m+ n)− q| > ε/2)

< 4q(1− q)[1/mε2 + 1/nε2 + 1/(m+ n)ε2];

by Chebychev’s inequality, where ||Z|| = (
∑k

i=1 Z
2
i )1/2.
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If p > q, then for ε > 0,

P (||(p∗, q∗) − (p, q)|| > ε)

≤ P (|p∗ − p|+ |q∗ − q| > ε) (2.9)

≤ P (|p∗ − p| > ε/2) + P (|q∗ − q| > ε/2)

= P (|p∗ − p| > ε/2, p∗ ≥ q∗) + P (|p∗ − p| > ε/2, p∗ < q∗)

+ P (|q∗ − q| > ε/2, p∗ ≥ q∗) + P (|q∗ − q| > ε/2, p∗ < q∗)

≤ P (|p∗ − p| > ε/2) + P (|q∗ − q| > ε/2)

+ 2P (|(p∗ − q∗)− (p− q)| > (p− q))

≤ 4p(1− p)/mε2 + 4q(1− q)/nε2

+ 2[p(1− p)/m+ q(1− q)/n]/(p− q)2,

by Chebychev’s inequality. Therefore if p ≥ q, (p∗, q∗) converges in probability to

(p, q) whenever m, n→∞ and the proof is complete. �
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2.5 Concluding Remarks

In this chapter, we have presented the estimates of the population parameters in-

cluding the risk difference and relative risk under order restrictions. These estimates

are also shown to be consistent. Theorem 2.1 shows that under the stated order

restriction, the estimates converges in probability to the true population parameters

for large m and n.



CHAPTER 3

TEST PROCEDURES AND DISTRIBUTIONS

3.1 Introduction

In this chapter, procedures are developed for comparing sequences of binomial pop-

ulations under order restriction. Alternative procedures are also presented. First,

we present some results on the truncated normal probability density function. This

result is useful in the establishment of the asymptotic distribution of some of the test

statistics considered in this chapter.

First we introduce the probability density function (pdf) of a truncated stan-

dard normal random variable. Let the probability density function of the truncated

standard normal random variable Rj, j = 1, 2, ...., k, be given by

f(rj) =
φ0,1(rj)I(0,∞)(rj)

1− Φ0,1(0)

=
2exp(−r2j/2)
√

2π
,

(3.1)

for rj > 0, where φ0,1(rj), and Φ0,1(rj) =
∫ rj
−∞

1√
2π
e−y

2/2dy are the standard normal

probability density function and cumulative distribution function of Rj respectively.

The mean and variance of Rj are given by

E(Rj) =

√
2

π
and V ar(Rj) = 1− 2

π
, (3.2)

respectively.

If Rj, j = 1, 2, .....k, are independent, then Cov(Ri, Rj) = 0.
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3.2 Test Statistics and Distributions

We now turn to the problem of comparing sequences of population parameters under

order restrictions in the binomial data setting. Consider the problem of testing the

hypothesis:

H0 : pj − qj = 0 against H1 : pj − qj ≥ 0, j = 1, 2, ..., k and pj − qj > 0 for at

least one j.

When qj, j = 1, 2, ..., k are known, we reject H0 in favor of H1 if

TA =
k∑
j=1

Sj ≥ C, (3.3)

where

Sj = 2{xj[ln(xj/mj)− lnqj] + (mj − xj)[ln(1− xj/mj)− ln(1− qj)]}

if xj/mj ≥ qj and 0 otherwise.

For large mj, the log likelihood statistic can be approximated by

TB =
k∑
j=1

(xj/mj − qj)2/[qj(1− qj)/mj] if xj/mj ≥ qj and 0 otherwise. (3.4)

Alternatively, it is well known that

Rj = sin−1{(p̂j)1/2}, (3.5)

j = 1, 2, ..., k are approximately normally distributed with mean

µj = sin−1{(pj)}1/2} and variance σ2
j = 1/(4mj). (3.6)

Hence an approximate test is to reject H0 in favor of H1 if

T =
k∑
j=1

4mj(R
∗
j − R̄)2 ≥ C∗, (3.7)
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where R∗j is the restricted of Rj,

R̄ =
k∑
i=1

niRi/

k∑
i=1

ni (3.8)

and

P (T ≥ C∗) =
k∑
i=2

P (i, k;n)Pr(χ
2
i−1 ≥ C∗), (3.9)

where P (i, k;n) are the level probabilities determined by (n1, n2, ..., nk), and χ2
i−1 is

a chi-square random variable with i− 1 degrees of freedom.

When qj are unknown, the testing procedure is: Reject H0 in favor of H1 if

TC =
k∑
j=1

Tj ≥ CB, (3.10)

where CB is chosen so that the test is an asymptotically α-level test, and Tj is given

by

Tj = 2{xj[ln(xj/mj)− ln((xj + yj)/(mj + nj))]

+(mj − xj)[ln(1− xj/mj)− ln(1− (xj + yj)/(mj + nj))]

+yj[ln(yj/nj)− ln((xj + yj)/(mj + nj))]

+(nj − yj)[ln(1− yj/nj)− ln(1− (xj + yj)/(mj + nj)], (3.11)

if xj/mj − yj/nj > 0, and 0 otherwise.

For large mj and nj, j = 1, 2, ..., k, the test statistic TC can be approximated by

TD =
k∑
j=1

Uj, (3.12)

where

Uj = (xj/mj−yj/mj)
2/{[(xj+yj)/(mj+nj)] · [(1−(xj+yj)/(mj+nj)(1/mj+1/nj)]}

(3.13)
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if xj/mj ≥ yj/mj and 0 otherwise.

For large mj and nj, j = 1, 2, ..., k, TC and TD are equivalent and

lim
mj ,nj→∞

PH0(TC > t) = lim
mj ,nj→∞

PH0(TD > t)

=

 P (
∑k

j=1 Z
2
j I[0,∞)(Zj) > t) if t > 0

1 if t ≥ 0,

=


∑k

j=1

 k

j

 (1
2
)kP (χ2

(j) > t) if t > 0

1 if t ≤ 0,

where χ2
(j) is a random variable having a chi-square distribution with j degrees of

freedom. See Oluyede (1993) for details.
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3.3 Alternative Procedures

Let

Wj =
(xj/mj − yj/nj)

{
√

[(xj + yj)/(mj + nj)] · [(1− (xj + yj)/(mj + nj))(1/mj + 1/nj)]}
(3.14)

if xj/mj ≥ yj/nj and 0 otherwise and define the vector of statistics W by

W = (W1,W2, .......,Wk)
T .

For testing the hypothesis H0 : pj − qj = 0 against H1 : pj − qj ≥ 0, j = 1, 2, ..., k and

pj − qj > 0 for at least one j, the following test statistic is proposed

Y 2
m,n = W TΨ−1W, (3.15)

where Ψ is the covariance matrix of the random vector W, and is independent of the

parameters. We reject H0 for large values of Y 2
m,n.

Alternatively, for testing the hypothesis, reject H0 for large values of

T =
k∑
j=1

Wj, (3.16)

where Wj is given above.

These test statistics both characterizes the null and alternative hypotheses. They

are small when H0 is true and large under H1.

Note that since each Wj, j = 1, 2, ...., k, has a standard normal distribution,

asymptotically under H1 the random vector W has in the limit as n → ∞ the k

dimensional normal distribution, Nk(λ,Ψ), and hence the statistic

Y 2
m,n = W TΨ−1W, (3.17)
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where

Ψ = diag((1− 2

π
))δij, (3.18)

δij = I(i=j), has as m,n→∞, the non-central chi-square distribution with k degrees

of freedom and non-centrality parameter ν =
∑k

i=1 λi, λ = (λ1, λ2, ..., λk)
T , and rank

(Ψ) = k. Under H0, λi = 0, j = 1, 2, .., k and hence Y 2
m,n has in the limit as m,n→∞

the chi-square distribution with k degrees of freedom.
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3.4 Concluding Remarks

We have presented tests procedures concerning the risk difference and well as the

relative risk under order restrictions. Several procedures are presented including

alternative procedures that uses arcsine transformation leading to the asymptotic

distributions of the test statistics including the truncated normal distribution, the

chi-bar type distributions, and chi-square distributions for the hypotheses considered.



CHAPTER 4

COMPARISON WITH CONTROL AND OTHER RESULTS

4.1 Introduction

This chapter deals with comparison with a known standard or control. Also, presented

are other alternative procedures for comparisons of binomial populations under order

restrictions.

First consider a sequence of binomial populations denoted by B(mj, pj), j =

1, 2, ...., k and a standard B(n, p∗), respectively.

4.2 Comparison with Standard

In this section, we consider testing the hypothesis:

H0 : p1 = p2 = ... = pk = p∗

against

H1 : pj > p∗for at least one j, j = 1, 2, ..., k. (4.1)

First consider testing

H0 : p = p∗against H1 : p > p∗.

The log likelihood ratio statistic is given by

2{x[ln(x/m)− lnp∗] + (m− x)[ln(1− x/m)− ln(1− p∗)]}

if x/m ≥ p∗ and 0 otherwise, where x is the observed value of X, a random variable

having a binomial distribution with parameters (m, p) and p∗ is the response rate for

the control treatment.
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For testing (4.1) when p∗ is known, we reject H0 in favor of H1 if

max{Lj, j = 1, 2, ..., k} ≥ C∗,

where

Lj = [(xj/mj − p∗)/
√
p∗(1− p∗)/mj]I(0,∞)(xj/mj − p∗)] (4.2)

and C∗ is chosen such that

P (max{Lj, j = 1, 2, ..., k} ≥ C∗) = α.

The critical values C∗ can be determined from the asymptotic distribution of max{Lj, j =

1, 2, ..., k} under H0. See Gupta et al (1985).

If p∗ is unknown, reject H0 whenever max{W ∗
j , j = 1, 2, ..., k} ≥ C∗, where

W ∗
j =

(xj/mj − y∗/n∗)√
[((xj + y∗)/(mj + n∗))(1− (xj + y∗)/(mj + n∗))(1/mj + 1/n∗)]

if xj/mj ≥ y∗/n∗ and 0 otherwise. (4.3)

The asymptotic distribution of W ∗ = (W ∗
1 ,W

∗
2 , ...,W

∗
k )T is k-dimensional normal

Nk(b, B) under H1. It is evident that if H0 is true, then b = (0, 0...0)T and B = σ2I,

where σ2 = 1− 2/π.
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4.3 Alternative Procedure

Alternatively, consider the following test statistic L = (L1, L2, ..., Lk)
T for p∗ known

and W ∗ = (W ∗
1 ,W

∗
2 , ...,W

∗
k )T for p∗ unknown. Asymptotically under H1, the statis-

tics have in the limit as mj → ∞, and mj, nj → ∞, the k-dimensional normal

distributions and hence the statistics

L2
n = LTA−1L (4.4)

and

W 2
m,n = W ∗TB−1W ∗ (4.5)

have in the limit, the non central chi-square distribution with rank (B) = k and non

centrality parameter

δ =
k∑
j=1

bj, b = (b1, b2, ..., bk)
T .

Consequently, when H0 is true, both statistics have in the limit the chi-square distri-

bution with k degrees of freedom.

However, the test statistics

TL =
k∑
j=1

Lj and TW =
k∑
j=1

W ∗
j (4.6)

are stochastically no larger than L2
n and W 2

m,n. This follows from the fact that for

every t > 0,

P (TL > t) =
k∑
j=1

 k

j

(1

2

)k
P (χ2

(j) > t)

<

k∑
j=0

 k

j

(1

2

)k
P (χ2

(k) > t)

= P (χ2
(k) > t),
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since

P (χ2
(k) ≥ t) ≤ P (χ2

(k+1) ≥ t) (4.7)

for k = 0, 1, 2, ... and for all t.

It follows that the tests based on TL and TW rejects H0 more often than the tests

based on L2
n and W 2

m,n.
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4.4 Concluding Remark

We have developed and presented procedures for comparing a sequence of binomial

populations with a standard. Alternative procedures in which both test statistics

(under the null hypothesis) have in the limit the chi-square distribution with k degrees

of freedom are developed and presented. The distributions of the considered test

statistics (under the alternative hypothesis) were shown to be the non-central chi-

square distribution.



CHAPTER 5

COMPARISON OF MULTINOMIAL POPULATIONS

5.1 Introduction

This chapter deals with extensions to multinomial populations. These extensions

provide local comparisons of multinomial populations via certain probability ratio

and hazard probability orderings. Estimation of the multinomial probabilities under

the orderings and appropriate tests procedures are developed.

5.2 Stochastic Domination in Multinomial Populations

Let U and V be two discrete random variables with x1 < x2 < ... < xk as possible

values. Then, the random variable U is stochastically no larger than V , denote by

U
st
≺ V , if

j∑
i=1

pi ≥
j∑
i=1

qi, where pj = P (U = xj) and qj = P (V = xj), j = 1, 2, ..., k. (5.1)

The next two definitions are due to Oluyede (1993).

Definition 5.2.1. The random variable U is no larger than V in local probability

ratio ordering, denoted by U
lpr
≺ V , if and only if∑j

i=1 pi∑j+1
i=1 pi

≥
∑j

i=1 qi∑j+1
i=1 qi

, (5.2)

with a strict inequality for at least one j, j = 1, 2, ..., k − 1.

Similarly, the random variable U is locally no larger than V in probability ratio
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star order, denoted by U
lpr∗

≺ V , if and only if

qj+1∑j
i=1 qi

≥ pj+1∑j
i=1 pi

, with a strict inequality for at least one j, j = 1, 2, ..., k − 1.

(5.3)

Suppose two medical treatments that lead to two multinomial populations can

be characterized by P and Q. Assuming that the higher category corresponds to

the best response, a reasonable criteria is to prefer treatment Q if (5.2) holds, or

equivalently if P
lpr
≺ Q, where P = (p1, p2, ..., pk) and Q = (q1, q2, ..., qk). In clinical

trials for example, tumor response may be classified as stable disease, partial response

and complete response.

In the comparison of two treatments, say old and new treatments, the appropriate

null hypothesis specifies equal outcome probabilities across treatments against a one-

sided alternative that patients receiving the new treatment have a larger probability

of a favorable outcome than patients receiving the old treatment, whether or not

partial response is considered favorable. In this case complete response is favorable

and stable disease is not. Since there is a natural ordering in the tumor response the

alternative hypothesis (5.2) and/or (5.1) provides a reasonable criteria for specifying

the effectiveness of one treatment over the other.

There are several other examples that include global assessment (much improved,

improved, no change, worse or much worse; Mehta, Patel, and Tsiatis, 1984, page 824),

degree of toxicity (mild, moderate, severe, life-threatening, or drug death; Mehta,

Patel, and Senchaudhuri, 1988, page 1002), clinical change (marked improvement,

moderate improvement, slight improvement, stationary, or worse; Rahlfs and Zim-

merman, 1993, page 1228), adverse event intensity (mild, moderate, severe, or intol-

erable; Chuang-Stein and Mohberg, 1993, page 246) and pneumonia evaluation (cure,
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improvement, or failure; Spilker and Schoenfelder, 1991, page 581). A common prob-

lem in these examples is to determine whether or not one treatment is “better” than

another on the basis of such ordered categories.

Local stochastic domination (5.2) or (5.3) is then an appropriate alternative,

especially in situations where stochastic domination does not clearly reveal prefer-

ence between the treatments. Models involving orderings of these types are easy to

interpret and explain in real-world situations.

An alternative reparametrization using appropriate terminology for failure time

data is as follows. If we suppose that an individual may fail in any one of k + 1 time

intervals Ji = [ci−1, ci), where 0 < c1 < c2 < c3 < .... < ck+1 = ∞ and let pi=P(an

individual fails in Ji), then the number of individuals failing in J1, J2, ....., Jk+1 have

a multinomial distribution with parameters n and p1, p2, ...., pk+1. Noting the P(an

individual fails in Ji given that they have not failed by ci−1) is

δi =
pi∑k+1
j=i pj

. (5.4)

It is clear that comparisons can be done via the multinomial hazard functions. Now,

Let

γi =
qi∑k+1
j=i qj

, with a strict inequality for at least one j, j = 1, 2, ..., k. (5.5)

Definition 5.2.2. We say the random variable U is locally no larger than V in hazard

order, denoted by U
lhr
≺ V , if and only if

γj ≥ δj, with a strict inequality for at least one j, j = 1, 2, ..., k. (5.6)
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5.3 Restricted Estimates

Note that for a given x > 0, and y > 0, the expression αx(1−α)y with the constraint

that 0 ≤ t ≤ α ≤ 1 is maximized at α∗ = max ( x
x+y

, t).

Now differentiating the expression αx(1− α)y with respect to α gives

xαx−1(1− α)y − y(1− α)y−1αx = αx−1(1− α)y−1[x(1− α)− αy]. (5.7)

The critical value or point is α = x
x+y

. This is the only critical point and it can be

shown that this is a local maximum. Thus, if t < x
y+x

, then this critical point is

in the interval [t, 1], where α is permitted to be and thus the max is at the critical

point. If t ≥ x
x+y

, then because the function is decreasing on the interval ( x
x+y

, 1], the

maximum is attained at α = t. Therefore we have the following lemma. See Oluyede

(1994) for additional details on lemmas 5.1 and 5.2.

Lemma 5.1. The maximum of the function αx(1− α)y subject to 0 ≤ t ≤ α ≤ 1 is

attained at

α∗ = max{x/(x+ y), t}. (5.8)

Let αj =
∑j

i=1 pi∑j+1
i=1 pi

, j = 1, 2, ..., k − 1, then p1 =
∏k−1

j=1 αj, pi = (1− αi−1)
∏k−1

j=i αj,

i = 1, 2, ..., k − 1, and pk = 1 − αk−1. The MLE of pj, j = 1, 2, ...., k is obtained by

maximizing the likelihood function

k−1∏
j=1

α
∑j

i=1 xi
j (1− αj)xj+1 , for 0 ≤ αj ≤ 1, (5.9)

subject to αj ≥ βj, where

βj =

∑j
i=1 qi∑j+1
i=1 qi

, j = 1, 2, ..., k − 1, is known. (5.10)
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Applying lemma 5.1, we obtain the restricted maximum likelihood estimate given

by

α∗j = max{
j∑
i=1

xi/

j+1∑
i=1

xi, βj}, for j = 1, 2, ..., k − 1. (5.11)

Lemma 5.2. The maximum of the function αx(1−α)yβr(1−β)s subject to 0 ≤ β ≤

α ≤ 1 is attained at

(α∗, β∗) =


(

x
x+y

, r
r+s

)
if x

x+y
≥ r

r+s
,(

x+r
x+y+r+s

, x+r
x+y+r+s

)
if x

x+y
< r

r+s
.

Applying lemma 5.2 to the following likelihood function

L =
k−1∏
j=1

α
∑j

i=1 xi
j (1− αj)xj+1β

∑j
i=1 yi

j (1− βj)yj+1 , (5.12)

where αj =
∑j

i=1 pi∑j+1
i=1 pi

and βj =
∑j

i=1 qi∑j+1
i=1 qi

, j = 1, 2, ..., k − 1, we obtain the restricted

maximum likelihood estimate of (αj, βj) given by

(α∗j , β
∗
j ) =


(
αj, βj

)
if αj ≥ βj,(∑j

i=1 xi+yi∑j+1
i=1 xi+yi

,
∑j

i=1 xi+yi∑j+1
i=1 xi+yi

)
if αj < βj,

where αj =
∑j

i=1 xi/
∑j+1

i=1 xi and βj =
∑j

i=1 yi/
∑j+1

i=1 yi from which the MLE of

(pi, qi), i = 1, 2, ....., k can be readily obtained.
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5.4 Estimates Under Stochastic Order

We present some basic results and closed-form estimates of P and Q subject to

stochastic ordering. The test procedures in one and two-samples are developed in

subsequent sections.

The estimation technique involves a reduction of the parameter space to a sub-

space containing the restricted estimates and provides an alternative method to the

isotonic regression technique. Let ∆ = {(p1, p2, ..., pk, q1, q2, ..., qk) : pi ≥ 0, qi ≥

0, i = 1, 2, ..., k,
∑k

i=1 pi =
∑k

i=1 qi = 1} denote the parameter space.

Now, let Fj =
∑j

i=1 pi and Gj =
∑j

i=1 qj. Then the likelihood function can be

written as

L(p1, p2, ..., pk, q1, q2, ..., qk;x1, x2, ..., xk, y1, y2, ..., yk)

=
m!∏k
j=1 xj!

F x1
1

k∏
j=2

(Fj − Fj−1)xj
n!∏k
j=1 yj!

Gy1
1

k∏
j=2

(Gj −Gj−1)
yj . (5.13)

The restricted MLE are given by

p∗hr = (xhr/

jr+1∑
i=jr+1

xi)(

jr+1∑
i=jr+1

(xi + yi)/(m+ n)),

q∗hr = (yhr/

jr+1∑
i=jr+1

yi)(

jr+1∑
i=jr+1

(xi + yi)/(m+ n)),

(5.14)

hr = jr + 1, . . . , jr+1, r = 0, 1, 2, ..., t.

When (q1, q2, . . . , qk) is known, the restricted MLE of (p1, p2, ..., pk) is given by

p∗hr = (xhr/

jr+1∑
i=jr+1

xi)(

jr+1∑
i=jr+1

qi),
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for hr = jr + 1, . . . , jr+1, r = 0, 1, 2, . . . , t. See Lee (1987) and Oluyede (1993, 2009)

for details.

Note that if xi = 0, for some i, place a small weight δm(w) < 1, which may

depend on m and w in each empty cell and compute estimate as in the case xi > 0,

so that p∗i is the limit of these estimates as δm(w)→ 0, (Lee (1987)). These weights

may be chosen such that (p∗1, p
∗
2, ..., p

∗
k, q
∗
1, q
∗
2, ..., q

∗
k) is strongly consistent for P

st
≺ Q.
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5.5 Test Procedures

5.5.1 One-Sample Procedure

We now construct a test for

H0 : P = Q against HA : P
lpr
≺ Q,

where Q = (q1, q2, ..., qk) is a known standard. (5.15)

To construct a test for (5.17), (see Oluyede (1994) for details), note that under

H0 : P = Q, V
d−→ N(0,Γ) as m → ∞, where Γ = BΣBT = (qi(δij − qj)/

√
qiqj),

and Σ = (σij) = qi(δij− qj), and
d−→ denotes convergence in distribution. The vector

V = UB, where U =
√
m(x1/m − q1, x2/m − q2, ..., xk/m − qk)

T , B = (1/
√
qi)δij,

and δij = 1, if i = j and 0 otherwise. Let H = (hij) be an orthogonal matrix, then

S = HV
d−→ N(0, HΓHT ), where

Sj =
m[qj+1(

∑j
i=1 xi)− xj+1(

∑j
i=1 qi)]√

mqj+1(m
∑j

i=1 qi)(m
∑j+1

i=1 qi)
, j = 1, 2, ..., k − 1, (5.16)

are asymptotically normally distributed and mutually independent with mean 0 and

unit variance.

Let S = (S1I(0,∞)(S1), S2I(0,∞)(S2), ......., Sk−1I(0,∞)(Sk−1))
T be a vector of the

statistics, where Sj is given above. For testing the hypothesis (5.17), the following

test statistic is proposed

Y 2
m = STΨ−1S, (5.17)

where Ψ is the covariance matrix of the random vector S, and is independent of the

parameters. We reject H0 for large values of Y 2
m.
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Alternatively, for testing the hypothesis (5.17), reject H0 for large values of

W =
k−1∑
j=1

SjI(0,∞)(Sj) =
k−1∑
j=1

Wj. (5.18)

Another related test statistic of interest is given by

T =
k−1∑
j=1

S2
j I(0,∞)(Sj), (5.19)

where Sj is given by (5.18).

These test statistics both characterizes the null and alternative hypotheses. They

are small when H0 is true and large under HA.

Note that since each Sj, j = 1, 2, ...., k − 1, has a standard normal distribution,

asymptotically under HA the statistics

S = (S1I(0,∞)(S1), S2I(0,∞)(S2), ......., Sk−1I(0,∞)(Sk−1))
T , (5.20)

has in the limit as m → ∞ the k − 1 dimensional normal distribution, Nk−1(λ,Ψ),

and hence the statistic Y 2
m = STΨ−1S, where Ψ = diag((1 − 2

π
))δij, δij = I(i=j), has

as m→∞, the non-central chi-square distribution with k− 1 degrees of freedom and

non-centrality parameter ν =
∑k−1

i=1 λi, λ = (λ1, λ2, ..., λk−1)
T , and rank (Ψ) = k − 1.

Under H0, λi = 0, j = 1, 2, .., k − 1 and hence Y 2
m has in the limit as m → ∞ the

chi-square distribution with k − 1 degrees of freedom.

For the statistic W, note that since each Sj, j = 1, 2, ...., k − 1, is normally

distributed with mean 0 and unit variance, we see that each Wj = SjI(0,∞)(Sj) is

normally distributed with mean
√

(2/π) and variance 1− 2/π, and are independent.

Consequently, the statistic W is normally distributed with mean (k − 1)
√

(2/π) and

variance
∑k−1

i=1 V ar(Wj) = (k − 1)(1− 2/π), and covariance Cov(Sj, Sj) = 0.
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As for the statistic T =
∑k−1

j=1 S
2
j I(0,∞)(Sj), note that under the null hypothesis,

the asymptotic distribution of this proposed test statistic T is given by

lim
m→∞

PH0(T > C) =

 1 if C ≤ 0,

P (
∑k−1

j=1 Z
2
j I(0,∞)(Zj) > C) if C > 0,

where Zj, j = 1, 2, ..., k − 1, are independent and identically distributed with a stan-

dard normal distribution. The asymptotic null distribution is given by Robertson,

Wright and Dykstra (1988).

An α-level test based on T will rejectH0 if T (x1, x2, ..., xk) ≥ C, where (x1, x2, ..., xk)

is the observed value of X = (X1, X2, ..., Xk), and C is defined by

lim
m→∞

PH0(T ≥ C) =
k−1∑
j=1

(
k − 1

j
)(

1

2
)k−1P (χ2

(j) ≥ C) = α,

and χ2
(j) denotes a random variable having a chi-square distribution with j degrees of

freedom.
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5.5.2 Two-Sample Procedure

For the two-sample procedure, the hypothesis H0 : P = Q against HA : P
lpr
≺ Q can

be reduced to the following:

H0 : P = Q against HA : p̄j ≥ q̄j, j = 2, 3, ..., k,

and p̄j > q̄j for at least one j, where p̄j =
∑j−1

i=1 pi/
∑j

i=1 pi and q̄j =
∑j−1

i=1 qi/
∑j

i=1 qi.

For testing the hypothesis H0 : P = Q against HA : P
lpr
≺ Q, the following test

statistic is proposed

Y ∗2m,n = S∗TΘ−1S∗, (5.21)

where Θ is the covariance matrix of the random vector

S∗ = (S∗1I(0,∞)(S
∗
1), S∗2I(0,∞)(S

∗
2), ......, S∗k−1I(0,∞)(S

∗
k−1))

T .

The statistic S∗j are given by

S∗2j =
(dj+1bj+1)

−2[yj+1(
∑j

i=1 xi)− xj+1(
∑j

i=1 yi)]
2

q̄∗j+1(1− q̄∗j+1)(dj+1 + bj+1)/dj+1bj+1

, j = 1, 2, ..., k − 1, (5.22)

and q̄∗j is given by
∑j−1

i=1 (xi + yi)/
∑j

i=1(xi + yi). We have replaced q̄j by q̄∗j due

to the fact that q̄j is unknown, and under H0, pj = qj can be approximated by

(xj + yj)/(m + n), j = 1, 2, ..., k. The justification for the approximation process of

q̄j is given by the Theorem below.

Theorem 5.5.1. If p̄j ≥ q̄j, (p̄
∗
j , q̄
∗
j ) converges in probability to (p̄j, q̄j), j = 2, 3, ..., k

as m,n→∞.
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Proof : If p̄j = q̄j, then for ε > 0,

P (||(p̄∗j , q̄∗j ) − (p̄j, q̄j)|| > ε)

≤ P (|p̄∗j − p̄j|+ |q̄∗j − q̄j| > ε)

≤ P (|p̄∗j − p̄j| > ε/2) + P (|q̄∗j − q̄j| > ε/2) (5.23)

+ 2P (|(p̄∗j + q̄∗)/(m+ n)− q̄j| > ε/2)

< 4q̄j(1− q̄j)[1/mε2 + 1/nε2 + 1/(m+ n)ε2]; j = 2, 3, ..., k

by Chebychev’s inequality, where ||Z|| = (
∑k

i=1 Z
2
i )1/2.

If p̄j > q̄j, then for ε > 0,

P (||(p̄∗j , q̄∗j ) − (p̄j, q̄j)|| > ε)

≤ P (|p̄∗j − p̄j|+ |q̄∗j − q̄j| > ε) (5.24)

≤ P (|p̄∗j − p̄j| > ε/2) + P (|q̄∗j − q̄| > ε/2)

= P (|p̄∗j − p̄j| > ε/2, p̄∗j ≥ q̄∗j ) + P (|p̄∗j − p̄j| > ε/2, p̄∗j < q̄∗j )

+ P (|q̄∗j − q̄j| > ε/2, p̄∗j ≥ q̄∗j ) + P (|q̄∗j − q̄j| > ε/2, p̄∗j < q̄∗j )

≤ P (|p̄∗j − p̄j| > ε/2) + P (|q̄∗j − q̄j| > ε/2)

+ 2P (|(p̄∗j − q̄∗j )− (p̄j − q̄j)| > (p̄j − q̄j))

≤ 4p̄j(1− p̄j)/mε2 + 4q̄j(1− q̄j)/nε2

+ 2[p̄j(1− p̄j)/m+ q̄j(1− q̄j)/n]/(p̄j − q̄j)2,

j = 2, 3, ..., k by Chebychev’s inequality. Therefore if p̄j ≥ q̄j, (p̄∗j , q̄
∗
j ) converges in

probability to (p̄j, q̄j) whenever m, n→∞ and the proof is complete. �
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Alternatively, for testing the hypothesis H0 : P = Q against HA : P
lpr
≺ Q, reject

H0 for large values of

W ∗ =
k−1∑
j=1

S∗j I(0,∞)(S
∗
j ). (5.25)

Another related test statistic is given by

T ∗ =
k−1∑
j=1

S∗2j I(0,∞)(S
∗
j ). (5.26)

These test statistics both characterizes the null and alternative hypotheses. They are

small when H0 is true and large under HA.
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5.6 Tests For and Against Stochastic Ordering

5.6.1 Test Statistics and Procedures

Consider testingH0 : P = Q againstH1−H0, whereH1 : P
st
≺ Q andQ = (q1, q2, .., qk)

is known. The log-likelihood ratio test rejects H0 for large values of

T01 = −2lnλ01 = −2m
k∑
i=1

p̂i(lnqi − lnp∗i ). (5.27)

For the two-sample test, the log-likelihood ratio test of H0 against H1 − H0 rejects

H0 for large values of

T02 = 2m
k∑
i=1

p̂i(lnp
∗
i − lnp̄i) + 2n

k∑
i=1

q̂i(lnq
∗
i − lnq̄i),

where p̄i = q̄i = (mp̂i + nq̂i)/(m+ n). (5.28)

The corresponding chi-square analogue (one-sample) test rejects H0 for large values

of

X2
01 = m

k∑
i=1

[(p∗i − qi)2/qi] (5.29)

and the two-sample test rejects H0 for large values of

X2
02 = m

k∑
i=1

(p∗i − p̄i)2/p̄i + n
k∑
i=1

(q∗i − q̄i)2/q̄i. (5.30)

The log-likelihood ratio test and the corresponding chi-square analogues for both the

one- and two-sample cases for testing H1 : P
st
≺ Q against H2 :∼ H1 are given below.

Reject H1 for large values of

T12 = −2lnλ12 = 2m
k∑
i=1

p̂i(lnp̂i − lnp∗i ) (5.31)
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in the one-sample problem. For the two-sample problem reject H1 for large values of

T22 = −2lnλ22 = 2m
k∑
i=1

p̂i(lnp̂i − lnp∗i ) + 2n
k∑
i=1

q̂i(lnq̂i − lnq∗i ). (5.32)

Reject H1 for large values of

X2
12 = m

k∑
i=1

[(p∗i − p̂i)2/p∗i ] (5.33)

for one-sample and for the two-sample test reject H1 for large values of

X2
22 = m

k∑
i=1

[(p∗i − p̂i)2/p∗i ] + n

k∑
i=1

[(q∗i − q̂i)2/q∗i ]. (5.34)

The asymptotic distributions under the corresponding null hypothesis H0 for T01 and

(H1 for T12) are given by Robertson, Wright and Dykstra (1988).
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5.6.2 Test Restricted to Stochastic Order

In this chapter, we established a test procedure for testing H0 : P = Q against

HA : P
lpr
≺ Q. However, since we know that if P

lpr
≺ Q then P

st
≺ Q, we can test the

hypothesis H0 : P = Q against H1 : P
st
≺ Q by using the test statistic developed in

section 5. In the one-sample problem, for testing H0 : P = Q vs. H1 : P
st
≺ Q, reject

H0 at α-level if and only if T ≥ C, where T is given by (5.21) and C is defined by

PH0(S ≥ C) = α. For the two-sample procedure, one rejects H0 if T ∗ ≥ C, where T ∗

is given by (5.28) and C1, is such that P (T ∗ ≥ C1) = α. It can be verified that the

test based on T , T ∗, has the tendency to reject the null hypothesis more often than

the test based on T01, T02 or the chi-square analogues.
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5.7 Examples

This section contains two examples which illustrate the estimation and testing pro-

cedures developed in earlier sections. The first set of data (Devore and Peck 1986,

page 636) given in Table 1, compares opinion of smokers and nonsmokers on an anti

smoking advertisement. The empirical distributions for smokers and nonsmokers are

not stochastically ordered. Comparison in this case can be done with respect to cu-

mulative probability ratio ordering. Also, the maximum likelihood estimates of P and

Q restricted to P
st
≺ Q and the values of the test statistics T22 and T ∗ are computed.

The second set of data (Agresti 1984, page 30) compares changes in size of ulcer

crater under two treatments, A and B. The empirical distribution of crater size under

treatment A is stochastically less than the empirical distribution of crater size under

treatment B. To compare the effectiveness of the two treatments, the hypothesis of

homogeneity against local probability ratio ordering is tested.

Table 5.1 Opinion of Anti smoking AD

Opinions

Strongly Strongly

Dislike Dislike Neutral Like Like Total

Smoker 8 14 35 21 19 97

Nonsmoker 31 42 78 61 69 281
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The MLE of (p1, p2, p3, p4, p5, q1, q2, q3, q4, q5) restricted to P
st
≺ Q is obtained as

follows: Compute F̂j and Ĝj, j = 1, 2, 3, 4, 5. Since F̂1 < Ĝ1 and F̂2 < Ĝ2, the MLE

of (p1, p2, p3, p4, p5, q1, q2, q3, q4, q5) is given below:

j F̂j Ĝj p∗j q∗j

1 8
97

31
281

39
378

= 0.103 ( 39
378

) = 0.103

2 22
97

73
281

56
378

= 0.148 ( 56
378

) = 0.148

3 57
97

151
281

(35
75

)(283
378

) = 0.349 ( 78
208

)(283
378

) = 0.281

4 78
97

212
281

(21
75

)(283
378

) = 0.210 ( 61
208

)(283
378

) = 0.221

5 1 1 (19
75

)(283
378

) = 0.190 ( 69
208

)(283
378

) = 0.248

The loglikelihood ratio statistic (see Dykstra et al (1988)for details) for testing

H0 : P = Q against HA : P
st
≺ Q,

is given by

T22 = 2m
k∑
i=1

p̂i(lnp̂i − lnp∗i ) + 2n
k∑
i=1

q̂i(lnq̂i − lnq∗i ).

(5.35)

To compare smokers’ and nonsmokers’ opinion on the anti smoking advertisement,

we demonstrate the tests for both cumulative probability ratio and stochastic order-

ings by testing the hypothesis of homogeneity against the alternative that the two

multinomial distributions are local probability ratio ordered. The value of the test

statistic T22 and T ∗ are given by

T22 = 2m
k∑
i=1

p̂i(lnp̂i − lnp∗i ) + 2n
k∑
i=1

q̂i(lnq̂i − lnq∗i )

= 0.1970,

(5.36)
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and

T ∗ =
k−1∑
j=1

S∗2j I(0,∞)(S
∗
j )

= 0 + 0 + .0963 + .9963

= 1.0926. (5.37)

These values do not lead to the rejection of the null hypothesis.
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Table 5.2 Change in Size of Ulcer Crater

< 2/3 ≥ 2/3

Treatment Larger Healed Healed Healed Total

A 12 10 4 6 32

B 5 8 8 11 32

The MLE of (p1, p2, p3, p4, q1, q2, q3, q4) restricted P
st
≺ Q is given below.

j F̂j Ĝj p∗j q∗j

1 12
32

5
32

0.3750 0.15625

2 22
32

13
32

0.3125 0.25000

3 26
32

21
32

0.1250 0.25000

4 1 1 0.1875 0.34375

The value of the test statistic T ∗ is given by

T ∗ =
k−1∑
j=1

S∗2j I(0,∞)(S
∗
j )

= 0.8463 + 3.152 + 2.003

= 6.0013.

This value corresponds to attained significance level of between 0.025 and 0.05 which

leads to the rejection of the null hypothesis. Clearly, this is an indication that treat-

ment A is superior. Note that Pearson’s chi-square statistic X2 = 5.34 with a p-value

greater than 0.10 does not lead to the rejection of the null hypothesis.
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5.8 Concluding Remark

Restricted parameter estimates of the multinomial populations including those under

local stochastic domination (local probability ratio order) and stochastic order are

presented. We have also developed and presented procedures for comparing multino-

mial populations under these orderings. In particular, procedures for tests restricted

to and against stochastic ordering are presented. Alternative procedures in which

the test statistics have in the limit the chi-square distribution with k degrees of free-

dom are developed and presented. Numerical examples to illustrate the developed

techniques were developed presented.
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