May I Have Your Attention

Erik Rosegard
San Francisco State University, rosegard@sfsu.edu

Follow this and additional works at: http://digitalcommons.georgiasouthern.edu/sotlcommons

Part of the Curriculum and Instruction Commons, Educational Assessment, Evaluation, and Research Commons, Educational Methods Commons, Higher Education Commons, and the Social and Philosophical Foundations of Education Commons

Recommended Citation
Rosegard, Erik, "May I Have Your Attention" (2012). SoTL Commons Conference. 17.
http://digitalcommons.georgiasouthern.edu/sotlcommons/SoTL/2012/17
Boredom is a significant issue in education with students often exhibiting disinterest and disengagement in the classroom (Craig, Graesser, Sullins, & Gholson, 2004; Csikszentmihalyi, 2003; Pekrun, Goetz, Titz, & Perry, 2002). Boredom can be viewed as "a state of relatively low arousal and dissatisfaction, which is attributed to an inadequately stimulating situation" (Mikulas & Vodanovich, 1993, p. 3). This suboptimal arousal and resulting boredom have been associated with low grades and diminished academic achievement, truancy, dropout rates, school dissatisfaction, and problem behaviors (Larson & Richards, 1991). Low arousal has also been linked to a decreased ability to sustain attention and mental effort in the classroom.

Easterbrook's (1959) cue utilization hypothesis states that as arousal increases, one's attention becomes more focused/narrow and the number of cues that can be utilized decreases. Easterbrook stated that performance (learning) is negatively affected when attention is inadequate or inappropriate. Using Easterbrook's cue utilization hypothesis, it was hypothesized that introducing students to a relevant attention-grabber (a technique used to raise an individual's arousal level and focus their attention) would result in a statistically significant increase in information retention - encoding of semantic memory. Research examining the effect of arousal and attention on memory has been limited in large part to laboratory settings using item list memory tasks. This study attempts to explore the relationship in an applied setting (i.e., classroom).

College students (N=846) enrolled in a general education course (n=49-62 students per course x2 sections x2 semesters x4 years) were randomly assigned to either an attention or a no-attention condition. Both conditions were exposed to a 90-second introduction; a 30-minute lecture; and a 10-minute, 15-point exam at the end of the lecture. The attention condition was exposed to an attention-grabber. The no-attention condition listened to the instructor take roll. An independent-samples t-test was conducted to compare attention and no-attention conditions. There was a significant difference in the scores for attention (M=13.36, SD=1.5) and no-attention (M=12.85, SD=1.4) conditions; t (844)=5.20, p < .001. Nesting effects were not found using hierarchical linear modeling. Results suggest that introducing a lecture or learning opportunity with an attention grabber has a positive effect on learning through information retention.

Implications for engaging students through attention grabbers may result in ameliorating boredom (low arousal) and its associated negative consequences (Wolters & Taylor, 2012). In addition, the resulting student engagement, a strong predictor of learning (Kuh & Klein, 2006), has the potential to increase student retention, persistence, and graduation rates (Tinto, 2009).